PDEInvBenchCode / tests /fluids_numpy_reference.py
DabbyOWL's picture
Reset history
484b847 verified
from warnings import warn
import numpy as np
warn(
"DEPRECATED: The file pdeinvbench/losses/fluids_numpy.py is being imported. This is most certainly a bug!"
)
def _maybe_unsqueeze_3d(
u,
):
"""
Given a tensor, makes sure that the last dimension is 1 (channel dim).
Helps to ensure number of channels consistency.
NOTE: This should only be used within this file. Assumes that u is an unbatched fluid field.
Also always assumes well-formed input.
"""
return u
def _maybe_unsqueeze_2d(u):
"""
Same as 3d version but assumes a tensor of shape (nx, ny, 1)
"""
return u
def _compute_stream_function(vorticity, x, y, fourier=False):
"""
from the vorticity, compute the stream function and returns in physical space
vorticity shape: (nt, nx, ny, 1) Channels is squeezed off
"""
w = vorticity
w = np.squeeze(w)
what = np.fft.fft2(w)
nx, ny = w.shape[-2], w.shape[-1]
dx = x[1] - x[0]
dy = y[1] - y[0]
kx = np.fft.fftfreq(nx, d=dx) * 2 * np.pi
ky = np.fft.fftfreq(ny, d=dy) * 2 * np.pi
kx, ky = np.meshgrid(kx, ky)
wavenumbers_squared = kx**2 + ky**2
# stream function = psi
psi_hat = np.zeros_like(what, dtype=np.complex128)
psi_hat[wavenumbers_squared > 0] = what[wavenumbers_squared > 0] / (
-wavenumbers_squared[wavenumbers_squared > 0]
)
if fourier:
return _maybe_unsqueeze_2d(psi_hat)
else:
return np.fft.ifft2(psi_hat).real
def compute_stream_function(vorticity, x, y, fourier=False):
nt = vorticity.shape[0]
out = []
for i in range(nt):
out.append(_compute_stream_function(vorticity[i], x, y, fourier=fourier))
return np.asarray(out)
def _compute_stream_function_jaxcfd(vorticity, x, y, fourier=False):
w = vorticity
w = np.squeeze(w)
what = np.fft.fft2(w)
nx, ny = w.shape[-2], w.shape[-1]
dx = x[1] - x[0]
dy = y[1] - y[0]
kx = np.fft.fftfreq(nx, d=dx) * 2 * np.pi
ky = np.fft.fftfreq(ny, d=dy) * 2 * np.pi
kx, ky = np.meshgrid(kx, ky)
wavenumbers_squared = kx**2 + ky**2
# Compute psi
lap = wavenumbers_squared
lap[0, 0] = 1
psi_hat = -1 / lap * what
if fourier:
return psi_hat
return np.fft.ifft2(psi_hat).real
def compute_stream_function_jaxcfd(vorticity, x, y, fourier=False):
nt = vorticity.shape[0]
out = []
for i in range(nt):
out.append(_compute_stream_function_jaxcfd(vorticity[i], x, y, fourier=fourier))
return np.asarray(out)
def advection(vorticity, x, y, stream_func):
psi_hat = stream_func(vorticity, x, y, fourier=True)
w = vorticity
w = np.squeeze(w)
# Compute u, v
nx, ny = w.shape[-2], w.shape[-1]
dx = x[1] - x[0]
dy = y[1] - y[0]
kx = np.fft.fftfreq(nx, d=dx) * 2 * np.pi
ky = np.fft.fftfreq(ny, d=dy) * 2 * np.pi
kx, ky = np.meshgrid(kx, ky)
vx_hat = 1j * ky * psi_hat
vy_hat = -1j * kx * psi_hat
vx = np.fft.ifft2(vx_hat).real
vy = np.fft.ifft2(vy_hat).real
w_dx = np.gradient(w, dx, axis=1)
w_dy = np.gradient(w, dy, axis=2)
adv = vx * w_dx + vy * w_dy
return _maybe_unsqueeze_3d(adv), _maybe_unsqueeze_3d(vx), _maybe_unsqueeze_3d(vy)
def second_order_gradient(field, d_coord, axis):
return np.gradient(np.gradient(field, d_coord, axis=axis), d_coord, axis=axis)
def laplacian(vorticity, x, y):
w = vorticity
w = np.squeeze(w)
nx, ny = w.shape[-2], w.shape[-1]
dx = x[1] - x[0]
dy = y[1] - y[0]
w_dxx = second_order_gradient(w, dx, axis=1)
w_dyy = second_order_gradient(w, dy, axis=2)
return w_dxx + w_dyy
def tf_residual_numpy(w, t, x, y, nu):
alpha = 0.1
forced_mode = 2
dy = y[1] - y[0]
dx = x[1] - x[0]
f = forced_mode * np.cos(forced_mode * y) # Forcing function
# Broadcast to solution field: nt, nx, ny, 1
f = np.reshape(f, (1, 1, -1, 1))
f = np.broadcast_to(f, w.shape)
# Damping term: alpha * w
damping = alpha * w
# Compute dwdt
dt: float = t[1] - t[0]
dwdt = np.gradient(w, dt, axis=0)
#### Stream function distraction ####
# In order to compute v, we need to compute the stream function psi
# This is necessary to compute the advection term
psi = compute_stream_function(w, x, y)
psi = np.expand_dims(psi, axis=-1)
#### Final stream function = psi ####
# compute advection
adv, vx, vy = advection(w, x, y, compute_stream_function)
prep_plot = lambda a: np.expand_dims(a, axis=-1)
advection_terms = {"adv": adv, "vx": vx, "vy": vy}
#### Continue with adv = v * \nabla w
lap = laplacian(w, x, y)
## Diffusion term
diffusion = nu * lap
### Now compute the new residual
# desired equation: dwdt = -v * \nabla w + v \nabla^2 w - alpha*w + f
adv = np.expand_dims(adv, axis=-1)
diffusion = np.expand_dims(diffusion, axis=-1)
residual = -1 * dwdt + -1 * adv + diffusion - damping + f
return residual