PropRAG: Guiding Retrieval with Beam Search over Proposition Paths
Abstract
PropRAG enhances retrieval-augmented generation by using context-rich propositions instead of triples and employs LLM-free beam search for multi-step reasoning chain discovery, achieving superior performance on complex question answering tasks.
Retrieval Augmented Generation (RAG) has become the standard approach for equipping Large Language Models (LLMs) with up-to-date knowledge. However, standard RAG, relying on independent passage retrieval, often fails to capture the interconnected nature of information required for complex, multi-hop reasoning. While structured RAG methods attempt to address this using knowledge graphs built from triples, we argue that the inherent context loss of triples (context collapse) limits the fidelity of the knowledge representation. We introduce PropRAG, a novel RAG framework that shifts from triples to context-rich propositions and introduces an efficient, LLM-free online beam search over proposition paths to discover multi-step reasoning chains. By coupling a higher-fidelity knowledge representation with explicit path discovery, PropRAG achieves state-of-the-art zero-shot Recall@5 and F1 scores on 2Wiki, HotpotQA, and MuSiQue, advancing non-parametric knowledge integration by improving evidence retrieval through richer representation and efficient reasoning path discovery.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper