Uncertainty-Aware Gradient Signal-to-Noise Data Selection for Instruction Tuning
Abstract
GRADFILTERING is an uncertainty-aware data selection framework for instruction tuning that uses gradient signal-to-noise ratio to improve LLM adaptation efficiency and performance.
Instruction tuning is a standard paradigm for adapting large language models (LLMs), but modern instruction datasets are large, noisy, and redundant, making full-data fine-tuning costly and often unnecessary. Existing data selection methods either build expensive gradient datastores or assign static scores from a weak proxy, largely ignoring evolving uncertainty, and thus missing a key source of LLM interpretability. We propose GRADFILTERING, an objective-agnostic, uncertainty-aware data selection framework that utilizes a small GPT-2 proxy with a LoRA ensemble and aggregates per-example gradients into a Gradient Signal-to-Noise Ratio (G-SNR) utility. Our method matches or surpasses random subsets and strong baselines in most LLM-as-a-judge evaluations as well as in human assessment. Moreover, GRADFILTERING-selected subsets converge faster than competitive filters under the same compute budget, reflecting the benefit of uncertainty-aware scoring.
Community
Instruction tuning is a standard paradigm for adapting large language models (LLMs), but modern instruction datasets are large, noisy, and redundant, making full-data fine-tuning costly and often unnecessary. Existing data selection methods either build expensive gradient datastores or assign static scores from a weak proxy, largely ignoring evolving uncertainty, and thus missing a key source of LLM interpretability. We propose GRADFILTERING, an objective-agnostic, uncertainty-aware data selection framework that utilizes a small GPT-2 proxy with a LoRA ensemble and aggregates per-example gradients into a Gradient Signal-to-Noise Ratio (G-SNR) utility. Our method matches or surpasses random subsets and strong baselines in most LLM-as-a-judge evaluations as well as in human assessment. Moreover, GRADFILTERING-selected subsets converge faster than competitive filters under the same compute budget, reflecting the benefit of uncertainty-aware scoring.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper