RIR-Mega-Speech: A Reverberant Speech Corpus with Comprehensive Acoustic Metadata and Reproducible Evaluation
Abstract
A large-scale reverberant speech corpus with detailed acoustic annotations is introduced to facilitate standardized comparison and reproduction of speech processing research.
Despite decades of research on reverberant speech, comparing methods remains difficult because most corpora lack per-file acoustic annotations or provide limited documentation for reproduction. We present RIR-Mega-Speech, a corpus of approximately 117.5 hours created by convolving LibriSpeech utterances with roughly 5,000 simulated room impulse responses from the RIR-Mega collection. Every file includes RT60, direct-to-reverberant ratio (DRR), and clarity index (C_{50}) computed from the source RIR using clearly defined, reproducible procedures. We also provide scripts to rebuild the dataset and reproduce all evaluation results. Using Whisper small on 1,500 paired utterances, we measure 5.20% WER (95% CI: 4.69--5.78) on clean speech and 7.70% (7.04--8.35) on reverberant versions, corresponding to a paired increase of 2.50 percentage points (2.06--2.98). This represents a 48% relative degradation. WER increases monotonically with RT60 and decreases with DRR, consistent with prior perceptual studies. While the core finding that reverberation harms recognition is well established, we aim to provide the community with a standardized resource where acoustic conditions are transparent and results can be verified independently. The repository includes one-command rebuild instructions for both Windows and Linux environments.
Community
Despite decades of research on reverberant speech, comparing methods remains difficult because most corpora lack per-file acoustic annotations or provide limited documentation for reproduction. We present RIR-Mega-Speech, a corpus of approximately 117.5 hours created by convolving LibriSpeech utterances with roughly 5,000 simulated room impulse responses from the RIR-Mega collection. Every file includes RT60, direct-to-reverberant ratio (DRR), and clarity index (C_{50}) computed from the source RIR using clearly defined, reproducible procedures. We also provide scripts to rebuild the dataset and reproduce all evaluation results. Using Whisper small on 1,500 paired utterances, we measure 5.20% WER (95% CI: 4.69--5.78) on clean speech and 7.70% (7.04--8.35) on reverberant versions, corresponding to a paired increase of 2.50 percentage points (2.06--2.98). This represents a 48% relative degradation. WER increases monotonically with RT60 and decreases with DRR, consistent with prior perceptual studies. While the core finding that reverberation harms recognition is well established, we aim to provide the community with a standardized resource where acoustic conditions are transparent and results can be verified independently. The repository includes one-command rebuild instructions for both Windows and Linux environments.
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- HQ-MPSD: A Multilingual Artifact-Controlled Benchmark for Partial Deepfake Speech Detection (2025)
- LibriVAD: A Scalable Open Dataset with Deep Learning Benchmarks for Voice Activity Detection (2025)
- Stuttering-Aware Automatic Speech Recognition for Indonesian Language (2026)
- Toward Noise-Aware Audio Deepfake Detection: Survey, SNR-Benchmarks, and Practical Recipes (2025)
- Incorporating Error Level Noise Embedding for Improving LLM-Assisted Robustness in Persian Speech Recognition (2025)
- When De-noising Hurts: A Systematic Study of Speech Enhancement Effects on Modern Medical ASR Systems (2025)
- SLM-TTA: A Framework for Test-Time Adaptation of Generative Spoken Language Models (2025)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 0
No model linking this paper
Datasets citing this paper 2
Spaces citing this paper 0
No Space linking this paper