Abstract
Linear ensemble sampling with Gaussian perturbations in stochastic linear bandits achieves near-optimal regret bounds through a novel continuous-time analysis approach involving Brownian motions.
We analyse linear ensemble sampling (ES) with standard Gaussian perturbations in stochastic linear bandits. We show that for ensemble size m=Θ(dlog n), ES attains tilde O(d^{3/2}sqrt n) high-probability regret, closing the gap to the Thompson sampling benchmark while keeping computation comparable. The proof brings a new perspective on randomized exploration in linear bandits by reducing the analysis to a time-uniform exceedance problem for m independent Brownian motions. Intriguingly, this continuous-time lens is not forced; it appears natural--and perhaps necessary: the discrete-time problem seems to be asking for a continuous-time solution, and we know of no other way to obtain a sharp ES bound.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper