SIGHT: Reinforcement Learning with Self-Evidence and Information-Gain Diverse Branching for Search Agent
Abstract
SIGHT enhances search-based reasoning in LLMs through self-evidence support and information-gain driven branching to overcome redundancy and tunnel vision in multi-turn question answering.
Reinforcement Learning (RL) has empowered Large Language Models (LLMs) to master autonomous search for complex question answering. However, particularly within multi-turn search scenarios, this interaction introduces a critical challenge: search results often suffer from high redundancy and low signal-to-noise ratios. Consequently, agents easily fall into "Tunnel Vision," where the forced interpretation of early noisy retrievals leads to irreversible error accumulation. To address these challenges, we propose SIGHT, a framework that enhances search-based reasoning through Self-Evidence Support (SES) and Information-Gain Driven Diverse Branching. SIGHT distills search results into high-fidelity evidence via SES and calculates an Information Gain score to pinpoint pivotal states where observations maximally reduce uncertainty. This score guides Dynamic Prompting Interventions - including de-duplication, reflection, or adaptive branching - to spawn new branches with SES. Finally, by integrating SES and correctness rewards via Group Relative Policy Optimization, SIGHT internalizes robust exploration strategies without external verifiers. Experiments on single-hop and multi-hop QA benchmarks demonstrate that SIGHT significantly outperforms existing approaches, particularly in complex reasoning scenarios, using fewer search steps.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper