1 HalluGuard: Demystifying Data-Driven and Reasoning-Driven Hallucinations in LLMs The reliability of Large Language Models (LLMs) in high-stakes domains such as healthcare, law, and scientific discovery is often compromised by hallucinations. These failures typically stem from two sources: data-driven hallucinations and reasoning-driven hallucinations. However, existing detection methods usually address only one source and rely on task-specific heuristics, limiting their generalization to complex scenarios. To overcome these limitations, we introduce the Hallucination Risk Bound, a unified theoretical framework that formally decomposes hallucination risk into data-driven and reasoning-driven components, linked respectively to training-time mismatches and inference-time instabilities. This provides a principled foundation for analyzing how hallucinations emerge and evolve. Building on this foundation, we introduce HalluGuard, an NTK-based score that leverages the induced geometry and captured representations of the NTK to jointly identify data-driven and reasoning-driven hallucinations. We evaluate HalluGuard on 10 diverse benchmarks, 11 competitive baselines, and 9 popular LLM backbones, consistently achieving state-of-the-art performance in detecting diverse forms of LLM hallucinations. 7 authors · Jan 26 1
1 HalluGuard: Evidence-Grounded Small Reasoning Models to Mitigate Hallucinations in Retrieval-Augmented Generation Large Language Models (LLMs) excel in many NLP tasks but remain prone to hallucinations, limiting trust in real-world applications. We present HalluGuard, a 4B-parameter Small Reasoning Model (SRM) for mitigating hallucinations in Retrieval-Augmented Generation (RAG). HalluGuard classifies document-claim pairs as grounded or hallucinated and produces evidence-grounded justifications for transparency. Our approach combines (i) a domain-agnostic synthetic dataset derived from FineWeb and refined through multi-stage curation and data reformation, (ii) synthetic grounded and hallucinated claims, and (iii) preference-based fine-tuning with Odds Ratio Preference Optimization to distill large-model reasoning into a smaller backbone. On the RAGTruth subset of the LLM-AggreFact benchmark, HalluGuard achieves 84.0% balanced accuracy (BAcc), rivaling specialized models, MiniCheck (7B; 84.0%) and Granite Guardian 3.3 (8B; 82.2%) while using roughly half their parameters. Over the full benchmark it reaches 75.7% BAcc, matching larger general-purpose LLMs such as GPT-4o (75.9%). We will release HalluGuard and datasets under Apache 2.0 upon acceptance. 4 authors · Oct 1, 2025 2