new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 17

Towards Solving More Challenging IMO Problems via Decoupled Reasoning and Proving

Automated Theorem Proving (ATP) in formal languages is a foundational challenge for AI. While Large Language Models (LLMs) have driven remarkable progress, a significant gap remains between their powerful informal reasoning capabilities and their weak formal proving performance. Recent studies show that the informal accuracy exceeds 80% while formal success remains below 8% on benchmarks like PutnamBench. We argue this gap persists because current state-of-the-art provers, by tightly coupling reasoning and proving, are trained with paradigms that inadvertently punish deep reasoning in favor of shallow, tactic-based strategies. To bridge this fundamental gap, we propose a novel framework that decouples high-level reasoning from low-level proof generation. Our approach utilizes two distinct, specialized models: a powerful, general-purpose Reasoner to generate diverse, strategic subgoal lemmas, and an efficient Prover to rigorously verify them. This modular design liberates the model's full reasoning potential and bypasses the pitfalls of end-to-end training. We evaluate our method on a challenging set of post-2000 IMO problems, a problem set on which no prior open-source prover has reported success. Our decoupled framework successfully solves 5 of these problems, demonstrating a significant step towards automated reasoning on exceptionally difficult mathematical challenges. To foster future research, we release our full dataset of generated and verified lemmas for a wide range of IMO problems, available at https://tencent-imo.github.io/ .

  • 7 authors
·
Jul 7, 2025 1

Vibe Reasoning: Eliciting Frontier AI Mathematical Capabilities -- A Case Study on IMO 2025 Problem 6

We introduce Vibe Reasoning, a human-AI collaborative paradigm for solving complex mathematical problems. Our key insight is that frontier AI models already possess the knowledge required to solve challenging problems -- they simply do not know how, what, or when to apply it. Vibe Reasoning transforms AI's latent potential into manifested capability through generic meta-prompts, agentic grounding, and model orchestration. We demonstrate this paradigm through IMO 2025 Problem 6, a combinatorial optimization problem where autonomous AI systems publicly reported failures. Our solution combined GPT-5's exploratory capabilities with Gemini 3 Pro's proof strengths, leveraging agentic workflows with Python code execution and file-based memory, to derive both the correct answer (2112) and a rigorous mathematical proof. Through iterative refinement across multiple attempts, we discovered the necessity of agentic grounding and model orchestration, while human prompts evolved from problem-specific hints to generic, transferable meta-prompts. We analyze why capable AI fails autonomously, how each component addresses specific failure modes, and extract principles for effective vibe reasoning. Our findings suggest that lightweight human guidance can unlock frontier models' mathematical reasoning potential. This is ongoing work; we are developing automated frameworks and conducting broader evaluations to further validate Vibe Reasoning's generality and effectiveness.

  • 4 authors
·
Dec 22, 2025

Wu's Method can Boost Symbolic AI to Rival Silver Medalists and AlphaGeometry to Outperform Gold Medalists at IMO Geometry

Proving geometric theorems constitutes a hallmark of visual reasoning combining both intuitive and logical skills. Therefore, automated theorem proving of Olympiad-level geometry problems is considered a notable milestone in human-level automated reasoning. The introduction of AlphaGeometry, a neuro-symbolic model trained with 100 million synthetic samples, marked a major breakthrough. It solved 25 of 30 International Mathematical Olympiad (IMO) problems whereas the reported baseline based on Wu's method solved only ten. In this note, we revisit the IMO-AG-30 Challenge introduced with AlphaGeometry, and find that Wu's method is surprisingly strong. Wu's method alone can solve 15 problems, and some of them are not solved by any of the other methods. This leads to two key findings: (i) Combining Wu's method with the classic synthetic methods of deductive databases and angle, ratio, and distance chasing solves 21 out of 30 methods by just using a CPU-only laptop with a time limit of 5 minutes per problem. Essentially, this classic method solves just 4 problems less than AlphaGeometry and establishes the first fully symbolic baseline strong enough to rival the performance of an IMO silver medalist. (ii) Wu's method even solves 2 of the 5 problems that AlphaGeometry failed to solve. Thus, by combining AlphaGeometry with Wu's method we set a new state-of-the-art for automated theorem proving on IMO-AG-30, solving 27 out of 30 problems, the first AI method which outperforms an IMO gold medalist.

  • 5 authors
·
Apr 9, 2024