Aeon: High-Performance Neuro-Symbolic Memory Management for Long-Horizon LLM Agents
Large Language Models (LLMs) are fundamentally constrained by the quadratic computational cost of self-attention and the "Lost in the Middle" phenomenon, where reasoning capabilities degrade as context windows expand. Existing solutions, primarily "Flat RAG" architectures relying on vector databases, treat memory as an unstructured bag of embeddings, failing to capture the hierarchical and temporal structure of long-horizon interactions. This paper presents Aeon, a Neuro-Symbolic Cognitive Operating System that redefines memory as a managed OS resource. Aeon structures memory into a Memory Palace (a spatial index implemented via Atlas, a SIMD-accelerated Page-Clustered Vector Index) and a Trace (a neuro-symbolic episodic graph). This architecture introduces three advances: (1) Symmetric INT8 Scalar Quantization, achieving 3.1x spatial compression and 5.6x math acceleration via NEON SDOT intrinsics; (2) a decoupled Write-Ahead Log (WAL) ensuring crash-recoverability with statistically negligible overhead (<1%); and (3) a Sidecar Blob Arena eliminating the prior 440-character text ceiling via an append-only mmap-backed blob file with generational garbage collection. The Semantic Lookaside Buffer (SLB) exploits conversational locality to achieve sub-5us retrieval latencies, with INT8 vectors dequantized to FP32 on cache insertion to preserve L1-resident lookup performance. Benchmarks on Apple M4 Max demonstrate that the combined architecture achieves 4.70ns INT8 dot product latency, 3.09us tree traversal at 100K nodes (3.4x over FP32), and P99 read latency of 750ns under hostile 16-thread contention via epoch-based reclamation.
