new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 19

Aeon: High-Performance Neuro-Symbolic Memory Management for Long-Horizon LLM Agents

Large Language Models (LLMs) are fundamentally constrained by the quadratic computational cost of self-attention and the "Lost in the Middle" phenomenon, where reasoning capabilities degrade as context windows expand. Existing solutions, primarily "Flat RAG" architectures relying on vector databases, treat memory as an unstructured bag of embeddings, failing to capture the hierarchical and temporal structure of long-horizon interactions. This paper presents Aeon, a Neuro-Symbolic Cognitive Operating System that redefines memory as a managed OS resource. Aeon structures memory into a Memory Palace (a spatial index implemented via Atlas, a SIMD-accelerated Page-Clustered Vector Index) and a Trace (a neuro-symbolic episodic graph). This architecture introduces three advances: (1) Symmetric INT8 Scalar Quantization, achieving 3.1x spatial compression and 5.6x math acceleration via NEON SDOT intrinsics; (2) a decoupled Write-Ahead Log (WAL) ensuring crash-recoverability with statistically negligible overhead (<1%); and (3) a Sidecar Blob Arena eliminating the prior 440-character text ceiling via an append-only mmap-backed blob file with generational garbage collection. The Semantic Lookaside Buffer (SLB) exploits conversational locality to achieve sub-5us retrieval latencies, with INT8 vectors dequantized to FP32 on cache insertion to preserve L1-resident lookup performance. Benchmarks on Apple M4 Max demonstrate that the combined architecture achieves 4.70ns INT8 dot product latency, 3.09us tree traversal at 100K nodes (3.4x over FP32), and P99 read latency of 750ns under hostile 16-thread contention via epoch-based reclamation.

  • 1 authors
·
Jan 14

Enter the Mind Palace: Reasoning and Planning for Long-term Active Embodied Question Answering

As robots become increasingly capable of operating over extended periods -- spanning days, weeks, and even months -- they are expected to accumulate knowledge of their environments and leverage this experience to assist humans more effectively. This paper studies the problem of Long-term Active Embodied Question Answering (LA-EQA), a new task in which a robot must both recall past experiences and actively explore its environment to answer complex, temporally-grounded questions. Unlike traditional EQA settings, which typically focus either on understanding the present environment alone or on recalling a single past observation, LA-EQA challenges an agent to reason over past, present, and possible future states, deciding when to explore, when to consult its memory, and when to stop gathering observations and provide a final answer. Standard EQA approaches based on large models struggle in this setting due to limited context windows, absence of persistent memory, and an inability to combine memory recall with active exploration. To address this, we propose a structured memory system for robots, inspired by the mind palace method from cognitive science. Our method encodes episodic experiences as scene-graph-based world instances, forming a reasoning and planning algorithm that enables targeted memory retrieval and guided navigation. To balance the exploration-recall trade-off, we introduce value-of-information-based stopping criteria that determines when the agent has gathered sufficient information. We evaluate our method on real-world experiments and introduce a new benchmark that spans popular simulation environments and actual industrial sites. Our approach significantly outperforms state-of-the-art baselines, yielding substantial gains in both answer accuracy and exploration efficiency.

  • 13 authors
·
Jul 17, 2025

From Human Memory to AI Memory: A Survey on Memory Mechanisms in the Era of LLMs

Memory is the process of encoding, storing, and retrieving information, allowing humans to retain experiences, knowledge, skills, and facts over time, and serving as the foundation for growth and effective interaction with the world. It plays a crucial role in shaping our identity, making decisions, learning from past experiences, building relationships, and adapting to changes. In the era of large language models (LLMs), memory refers to the ability of an AI system to retain, recall, and use information from past interactions to improve future responses and interactions. Although previous research and reviews have provided detailed descriptions of memory mechanisms, there is still a lack of a systematic review that summarizes and analyzes the relationship between the memory of LLM-driven AI systems and human memory, as well as how we can be inspired by human memory to construct more powerful memory systems. To achieve this, in this paper, we propose a comprehensive survey on the memory of LLM-driven AI systems. In particular, we first conduct a detailed analysis of the categories of human memory and relate them to the memory of AI systems. Second, we systematically organize existing memory-related work and propose a categorization method based on three dimensions (object, form, and time) and eight quadrants. Finally, we illustrate some open problems regarding the memory of current AI systems and outline possible future directions for memory in the era of large language models.

  • 8 authors
·
Apr 22, 2025