9 SHARE: An SLM-based Hierarchical Action CorREction Assistant for Text-to-SQL Current self-correction approaches in text-to-SQL face two critical limitations: 1) Conventional self-correction methods rely on recursive self-calls of LLMs, resulting in multiplicative computational overhead, and 2) LLMs struggle to implement effective error detection and correction for declarative SQL queries, as they fail to demonstrate the underlying reasoning path. In this work, we propose SHARE, an SLM-based Hierarchical Action corREction assistant that enables LLMs to perform more precise error localization and efficient correction. SHARE orchestrates three specialized Small Language Models (SLMs) in a sequential pipeline, where it first transforms declarative SQL queries into stepwise action trajectories that reveal underlying reasoning, followed by a two-phase granular refinement. We further propose a novel hierarchical self-evolution strategy for data-efficient training. Experimental results demonstrate that SHARE effectively enhances self-correction capabilities while proving robust across various LLMs. Furthermore, our comprehensive analysis shows that SHARE maintains strong performance even in low-resource training settings, which is particularly valuable for text-to-SQL applications with data privacy constraints. 7 authors · May 31, 2025 2
5 Share Your Attention: Transformer Weight Sharing via Matrix-based Dictionary Learning Large language models (LLMs) have revolutionized AI applications, yet their high computational and memory demands hinder their widespread deployment. Existing compression techniques focus on intra-block optimizations (e.g. low-rank approximation, attention head pruning), while the repetitive layered structure of transformers implies significant inter-block redundancy - a dimension largely unexplored beyond key-value (KV) caching. Inspired by dictionary learning in CNNs, we propose a framework for structured weight sharing across transformer layers. Our approach decomposes attention projection matrices into shared dictionary atoms, reducing the attention module's parameters by 66.7% while achieving on-par performance. Unlike complex methods requiring distillation or architectural changes, MASA (Matrix Atom Sharing in Attention) operates as a drop-in replacement - trained with standard optimizers - and represents each layer's weights as linear combinations of shared matrix atoms. Experiments across scales (100M-700M parameters) show that MASA achieves better benchmark accuracy and perplexity than grouped-query attention (GQA), low-rank baselines and recently proposed Repeat-all-over/Sequential sharing at comparable parameter budgets. Ablation studies confirm robustness to the dictionary size and the efficacy of shared representations in capturing cross-layer statistical regularities. Extending to Vision Transformers (ViT), MASA matches performance metrics on image classification and detection tasks with 66.7% fewer attention parameters. By combining dictionary learning strategies with transformer efficiency, MASA offers a scalable blueprint for parameter-efficient models without sacrificing performance. Finally, we investigate the possibility of employing MASA on pretrained LLMs to reduce their number of parameters without experiencing any significant drop in their performance. 4 authors · Aug 6, 2025
2 SHARE: Shared Memory-Aware Open-Domain Long-Term Dialogue Dataset Constructed from Movie Script Shared memories between two individuals strengthen their bond and are crucial for facilitating their ongoing conversations. This study aims to make long-term dialogue more engaging by leveraging these shared memories. To this end, we introduce a new long-term dialogue dataset named SHARE, constructed from movie scripts, which are a rich source of shared memories among various relationships. Our dialogue dataset contains the summaries of persona information and events of two individuals, as explicitly revealed in their conversation, along with implicitly extractable shared memories. We also introduce EPISODE, a long-term dialogue framework based on SHARE that utilizes shared experiences between individuals. Through experiments using SHARE, we demonstrate that shared memories between two individuals make long-term dialogues more engaging and sustainable, and that EPISODE effectively manages shared memories during dialogue. Our new dataset is publicly available at https://anonymous.4open.science/r/SHARE-AA1E/SHARE.json. 3 authors · Oct 27, 2024
- SHARe-KAN: Holographic Vector Quantization for Memory-Bound Inference Kolmogorov-Arnold Networks (KANs) face a fundamental memory wall: their learned basis functions create parameter counts that impose extreme bandwidth demands, hindering deployment in memory-constrained environments. We show that Vision KANs exhibit a holographic topology, where information is distributed across the interference of splines rather than localized to specific edges. Consequently, traditional pruning fails (10% sparsity degrades mAP from 85.23% to 45%, a sim40-point drop). To address this, we present SHARe-KAN, a framework utilizing Gain-Shape-Bias Vector Quantization to exploit functional redundancy while preserving the dense topology. Coupled with LUTHAM, a hardware-aware compiler with static memory planning, we achieve 88times runtime memory reduction (1.13 GB to 12.91 MB) and match uncompressed baseline accuracy on PASCAL VOC. Profiling on NVIDIA Ampere architecture confirms >90% L2 cache residency, demonstrating that the workload is decoupled from DRAM bandwidth constraints inherent to spline-based architectures. 1 authors · Dec 9, 2025
- Shared Heritage, Distinct Writing: Rethinking Resource Selection for East Asian Historical Documents Historical documents in the Sinosphere are known to share common formats and practices, particularly in veritable records compiled by court historians. This shared linguistic heritage has led researchers to use Classical Chinese resources for cross-lingual transfer when processing historical documents from Korea and Japan, which remain relatively low-resource. In this paper, we question the assumption of cross-lingual transferability from Classical Chinese to Hanja and Kanbun, the ancient written languages of Korea and Japan, respectively. Our experiments across machine translation, named entity recognition, and punctuation restoration tasks show minimal impact of Classical Chinese datasets on language model performance for ancient Korean documents written in Hanja, with performance differences within 0.0068 F1-score for sequence labeling tasks and up to +0.84 BLEU score for translation. These limitations persist consistently across various model sizes, architectures, and domain-specific datasets. Our analysis reveals that the benefits of Classical Chinese resources diminish rapidly as local language data increases for Hanja, while showing substantial improvements only in extremely low-resource scenarios for both Korean and Japanese historical documents. These findings emphasize the need for careful empirical validation rather than assuming benefits from indiscriminate cross-lingual transfer. 5 authors · Nov 7, 2024
74 ShareGPT4Video: Improving Video Understanding and Generation with Better Captions We present the ShareGPT4Video series, aiming to facilitate the video understanding of large video-language models (LVLMs) and the video generation of text-to-video models (T2VMs) via dense and precise captions. The series comprises: 1) ShareGPT4Video, 40K GPT4V annotated dense captions of videos with various lengths and sources, developed through carefully designed data filtering and annotating strategy. 2) ShareCaptioner-Video, an efficient and capable captioning model for arbitrary videos, with 4.8M high-quality aesthetic videos annotated by it. 3) ShareGPT4Video-8B, a simple yet superb LVLM that reached SOTA performance on three advancing video benchmarks. To achieve this, taking aside the non-scalable costly human annotators, we find using GPT4V to caption video with a naive multi-frame or frame-concatenation input strategy leads to less detailed and sometimes temporal-confused results. We argue the challenge of designing a high-quality video captioning strategy lies in three aspects: 1) Inter-frame precise temporal change understanding. 2) Intra-frame detailed content description. 3) Frame-number scalability for arbitrary-length videos. To this end, we meticulously designed a differential video captioning strategy, which is stable, scalable, and efficient for generating captions for videos with arbitrary resolution, aspect ratios, and length. Based on it, we construct ShareGPT4Video, which contains 40K high-quality videos spanning a wide range of categories, and the resulting captions encompass rich world knowledge, object attributes, camera movements, and crucially, detailed and precise temporal descriptions of events. Based on ShareGPT4Video, we further develop ShareCaptioner-Video, a superior captioner capable of efficiently generating high-quality captions for arbitrary videos... 15 authors · Jun 6, 2024 4
69 SRMT: Shared Memory for Multi-agent Lifelong Pathfinding Multi-agent reinforcement learning (MARL) demonstrates significant progress in solving cooperative and competitive multi-agent problems in various environments. One of the principal challenges in MARL is the need for explicit prediction of the agents' behavior to achieve cooperation. To resolve this issue, we propose the Shared Recurrent Memory Transformer (SRMT) which extends memory transformers to multi-agent settings by pooling and globally broadcasting individual working memories, enabling agents to exchange information implicitly and coordinate their actions. We evaluate SRMT on the Partially Observable Multi-Agent Pathfinding problem in a toy Bottleneck navigation task that requires agents to pass through a narrow corridor and on a POGEMA benchmark set of tasks. In the Bottleneck task, SRMT consistently outperforms a variety of reinforcement learning baselines, especially under sparse rewards, and generalizes effectively to longer corridors than those seen during training. On POGEMA maps, including Mazes, Random, and MovingAI, SRMT is competitive with recent MARL, hybrid, and planning-based algorithms. These results suggest that incorporating shared recurrent memory into the transformer-based architectures can enhance coordination in decentralized multi-agent systems. The source code for training and evaluation is available on GitHub: https://github.com/Aloriosa/srmt. 3 authors · Jan 22, 2025 3
66 ShareGPT-4o-Image: Aligning Multimodal Models with GPT-4o-Level Image Generation Recent advances in multimodal generative models have unlocked photorealistic, instruction-aligned image generation, yet leading systems like GPT-4o-Image remain proprietary and inaccessible. To democratize these capabilities, we present ShareGPT-4o-Image, the first dataset comprising 45K text-to-image and 46K text-and-image-to-image data, all synthesized using GPT-4o's image generation capabilities for distilling its advanced image generation abilities. Leveraging this dataset, we develop Janus-4o, a multimodal large language model capable of both text-to-image and text-and-image-to-image generation. Janus-4o not only significantly improves text-to-image generation over its predecessor, Janus-Pro, but also newly supports text-and-image-to-image generation. Notably, it achieves impressive performance in text-and-image-to-image generation from scratch, using only 91K synthetic samples and 6 hours of training on an 8 A800-GPU machine. We hope the release of ShareGPT-4o-Image and Janus-4o will foster open research in photorealistic, instruction-aligned image generation. 8 authors · Jun 22, 2025 3
18 ShareGPT4V: Improving Large Multi-Modal Models with Better Captions In the realm of large multi-modal models (LMMs), efficient modality alignment is crucial yet often constrained by the scarcity of high-quality image-text data. To address this bottleneck, we introduce the ShareGPT4V dataset, a pioneering large-scale resource featuring 1.2 million highly descriptive captions, which surpasses existing datasets in diversity and information content, covering world knowledge, object properties, spatial relationships, and aesthetic evaluations. Specifically, ShareGPT4V originates from a curated 100K high-quality captions collected from advanced GPT4-Vision and has been expanded to 1.2M with a superb caption model trained on this subset. ShareGPT4V first demonstrates its effectiveness for the Supervised Fine-Tuning (SFT) phase, by substituting an equivalent quantity of detailed captions in existing SFT datasets with a subset of our high-quality captions, significantly enhancing the LMMs like LLaVA-7B, LLaVA-1.5-13B, and Qwen-VL-Chat-7B on the MME and MMBench benchmarks, with respective gains of 222.8/22.0/22.3 and 2.7/1.3/1.5. We further incorporate ShareGPT4V data into both the pre-training and SFT phases, obtaining ShareGPT4V-7B, a superior LMM based on a simple architecture that has remarkable performance across a majority of the multi-modal benchmarks. This project is available at https://ShareGPT4V.github.io to serve as a pivotal resource for advancing the LMMs community. 8 authors · Nov 21, 2023 2
1 Shared DIFF Transformer DIFF Transformer improves attention allocation by enhancing focus on relevant context while suppressing noise. It introduces a differential attention mechanism that calculates the difference between two independently generated attention distributions, effectively reducing noise and promoting sparse attention patterns. However, the independent signal generation in DIFF Transformer results in parameter redundancy and suboptimal utilization of information. In this work, we propose Shared DIFF Transformer, which draws on the idea of a differential amplifier by introducing a shared base matrix to model global patterns and incorporating low-rank updates to enhance task-specific flexibility. This design significantly reduces parameter redundancy, improves efficiency, and retains strong noise suppression capabilities. Experimental results show that, compared to DIFF Transformer, our method achieves better performance in tasks such as long-sequence modeling, key information retrieval, and in-context learning. Our work provides a novel and efficient approach to optimizing differential attention mechanisms and advancing robust Transformer architectures. 4 authors · Jan 29, 2025
1 Shared Imagination: LLMs Hallucinate Alike Despite the recent proliferation of large language models (LLMs), their training recipes -- model architecture, pre-training data and optimization algorithm -- are often very similar. This naturally raises the question of the similarity among the resulting models. In this paper, we propose a novel setting, imaginary question answering (IQA), to better understand model similarity. In IQA, we ask one model to generate purely imaginary questions (e.g., on completely made-up concepts in physics) and prompt another model to answer. Surprisingly, despite the total fictionality of these questions, all models can answer each other's questions with remarkable success, suggesting a "shared imagination space" in which these models operate during such hallucinations. We conduct a series of investigations into this phenomenon and discuss implications on model homogeneity, hallucination, and computational creativity. 4 authors · Jul 23, 2024
1 ShareLoRA: Parameter Efficient and Robust Large Language Model Fine-tuning via Shared Low-Rank Adaptation This study introduces an approach to optimize Parameter Efficient Fine Tuning (PEFT) for Pretrained Language Models (PLMs) by implementing a Shared Low Rank Adaptation (ShareLoRA). By strategically deploying ShareLoRA across different layers and adapting it for the Query, Key, and Value components of self-attention layers, we achieve a substantial reduction in the number of training parameters and memory usage. Importantly, ShareLoRA not only maintains model performance but also exhibits robustness in both classification and generation tasks across a variety of models, including RoBERTa, GPT-2, LLaMA and LLaMA2. It demonstrates superior transfer learning capabilities compared to standard LoRA applications and mitigates overfitting by sharing weights across layers. Our findings affirm that ShareLoRA effectively boosts parameter efficiency while ensuring scalable and high-quality performance across different language model architectures. 4 authors · Jun 15, 2024
- ShareChat: A Dataset of Chatbot Conversations in the Wild While academic research typically treats Large Language Models (LLM) as generic text generators, they are distinct commercial products with unique interfaces and capabilities that fundamentally shape user behavior. Current datasets obscure this reality by collecting text-only data through uniform interfaces that fail to capture authentic chatbot usage. To address this limitation, we present ShareChat, a large-scale corpus of 142,808 conversations (660,293 turns) sourced directly from publicly shared URLs on ChatGPT, Perplexity, Grok, Gemini, and Claude. ShareChat distinguishes itself by preserving native platform affordances, such as citations and thinking traces, across a diverse collection covering 101 languages and the period from April 2023 to October 2025. Furthermore, ShareChat offers substantially longer context windows and greater interaction depth than prior datasets. To illustrate the dataset's breadth, we present three case studies: a completeness analysis of intent satisfaction, a citation study of model grounding, and a temporal analysis of engagement rhythms. This work provides the community with a vital and timely resource for understanding authentic user-LLM chatbot interactions in the wild. The dataset will be publicly available. 5 authors · Dec 19, 2025
- Shared Control for Game Accessibility: Understanding Current Human Cooperation Practices to Inform the Design of Partial Automation Solutions Shared control is a form of video gaming accessibility support that allows players with disabilities to delegate inaccessible controls to another person. Through interviews involving 14 individuals with lived experience of accessible gaming in shared control, we explore the ways in which shared control technologies are adopted in practice, the accessibility challenges they address, and how the support currently provided in shared control can be automated to remove the need for a human assistant. Findings indicate that shared control is essential for enabling access to otherwise inaccessible games, but its reliance on human support is a key limitation. Participants welcomed the idea of automating the support with software agents, while also identifying limitations and design requirements. Accordingly, this work contributes insights into current practices and proposes guidelines for developing automated support systems. 4 authors · Sep 2, 2025
11 The ShareLM Collection and Plugin: Contributing Human-Model Chats for the Benefit of the Community Human-model conversations provide a window into users' real-world scenarios, behavior, and needs, and thus are a valuable resource for model development and research. While for-profit companies collect user data through the APIs of their models, using it internally to improve their own models, the open source and research community lags behind. We introduce the ShareLM collection, a unified set of human conversations with large language models, and its accompanying plugin, a Web extension for voluntarily contributing user-model conversations. Where few platforms share their chats, the ShareLM plugin adds this functionality, thus, allowing users to share conversations from most platforms. The plugin allows the user to rate their conversations, both at the conversation and the response levels, and delete conversations they prefer to keep private before they ever leave the user's local storage. We release the plugin conversations as part of the ShareLM collection, and call for more community effort in the field of open human-model data. The code, plugin, and data are available. 3 authors · Aug 15, 2024 1
2 R1-ShareVL: Incentivizing Reasoning Capability of Multimodal Large Language Models via Share-GRPO In this work, we aim to incentivize the reasoning ability of Multimodal Large Language Models (MLLMs) via reinforcement learning (RL) and develop an effective approach that mitigates the sparse reward and advantage vanishing issues during RL. To this end, we propose Share-GRPO, a novel RL approach that tackle these issues by exploring and sharing diverse reasoning trajectories over expanded question space. Specifically, Share-GRPO first expands the question space for a given question via data transformation techniques, and then encourages MLLM to effectively explore diverse reasoning trajectories over the expanded question space and shares the discovered reasoning trajectories across the expanded questions during RL. In addition, Share-GRPO also shares reward information during advantage computation, which estimates solution advantages hierarchically across and within question variants, allowing more accurate estimation of relative advantages and improving the stability of policy training. Extensive evaluations over six widely-used reasoning benchmarks showcase the superior performance of our method. Code will be available at https://github.com/HJYao00/R1-ShareVL. 11 authors · May 22, 2025 2
15 MindEye2: Shared-Subject Models Enable fMRI-To-Image With 1 Hour of Data Reconstructions of visual perception from brain activity have improved tremendously, but the practical utility of such methods has been limited. This is because such models are trained independently per subject where each subject requires dozens of hours of expensive fMRI training data to attain high-quality results. The present work showcases high-quality reconstructions using only 1 hour of fMRI training data. We pretrain our model across 7 subjects and then fine-tune on minimal data from a new subject. Our novel functional alignment procedure linearly maps all brain data to a shared-subject latent space, followed by a shared non-linear mapping to CLIP image space. We then map from CLIP space to pixel space by fine-tuning Stable Diffusion XL to accept CLIP latents as inputs instead of text. This approach improves out-of-subject generalization with limited training data and also attains state-of-the-art image retrieval and reconstruction metrics compared to single-subject approaches. MindEye2 demonstrates how accurate reconstructions of perception are possible from a single visit to the MRI facility. All code is available on GitHub. 11 authors · Mar 17, 2024 2
10 Data Contamination Report from the 2024 CONDA Shared Task The 1st Workshop on Data Contamination (CONDA 2024) focuses on all relevant aspects of data contamination in natural language processing, where data contamination is understood as situations where evaluation data is included in pre-training corpora used to train large scale models, compromising evaluation results. The workshop fostered a shared task to collect evidence on data contamination in current available datasets and models. The goal of the shared task and associated database is to assist the community in understanding the extent of the problem and to assist researchers in avoiding reporting evaluation results on known contaminated resources. The shared task provides a structured, centralized public database for the collection of contamination evidence, open to contributions from the community via GitHub pool requests. This first compilation paper is based on 566 reported entries over 91 contaminated sources from a total of 23 contributors. The details of the individual contamination events are available in the platform. The platform continues to be online, open to contributions from the community. 28 authors · Jul 31, 2024 3
8 The FIGNEWS Shared Task on News Media Narratives We present an overview of the FIGNEWS shared task, organized as part of the ArabicNLP 2024 conference co-located with ACL 2024. The shared task addresses bias and propaganda annotation in multilingual news posts. We focus on the early days of the Israel War on Gaza as a case study. The task aims to foster collaboration in developing annotation guidelines for subjective tasks by creating frameworks for analyzing diverse narratives highlighting potential bias and propaganda. In a spirit of fostering and encouraging diversity, we address the problem from a multilingual perspective, namely within five languages: English, French, Arabic, Hebrew, and Hindi. A total of 17 teams participated in two annotation subtasks: bias (16 teams) and propaganda (6 teams). The teams competed in four evaluation tracks: guidelines development, annotation quality, annotation quantity, and consistency. Collectively, the teams produced 129,800 data points. Key findings and implications for the field are discussed. 8 authors · Jul 25, 2024 2
3 Publicly Shareable Clinical Large Language Model Built on Synthetic Clinical Notes The development of large language models tailored for handling patients' clinical notes is often hindered by the limited accessibility and usability of these notes due to strict privacy regulations. To address these challenges, we first create synthetic large-scale clinical notes using publicly available case reports extracted from biomedical literature. We then use these synthetic notes to train our specialized clinical large language model, Asclepius. While Asclepius is trained on synthetic data, we assess its potential performance in real-world applications by evaluating it using real clinical notes. We benchmark Asclepius against several other large language models, including GPT-3.5-turbo and other open-source alternatives. To further validate our approach using synthetic notes, we also compare Asclepius with its variants trained on real clinical notes. Our findings convincingly demonstrate that synthetic clinical notes can serve as viable substitutes for real ones when constructing high-performing clinical language models. This conclusion is supported by detailed evaluations conducted by both GPT-4 and medical professionals. All resources including weights, codes, and data used in the development of Asclepius are made publicly accessible for future research. 15 authors · Sep 1, 2023
1 End-to-End Dexterous Arm-Hand VLA Policies via Shared Autonomy: VR Teleoperation Augmented by Autonomous Hand VLA Policy for Efficient Data Collection Achieving human-like dexterous manipulation remains a major challenge for general-purpose robots. While Vision-Language-Action (VLA) models show potential in learning skills from demonstrations, their scalability is limited by scarce high-quality training data. Existing data collection methods face inherent constraints: manual teleoperation overloads human operators, while automated planning often produces unnatural motions. We propose a Shared Autonomy framework that divides control between macro and micro motions. A human operator guides the robot's arm pose through intuitive VR teleoperation, while an autonomous DexGrasp-VLA policy handles fine-grained hand control using real-time tactile and visual feedback. This division significantly reduces cognitive load and enables efficient collection of high-quality coordinated arm-hand demonstrations. Using this data, we train an end-to-end VLA policy enhanced with our novel Arm-Hand Feature Enhancement module, which captures both distinct and shared representations of macro and micro movements for more natural coordination. Our Corrective Teleoperation system enables continuous policy improvement through human-in-the-loop failure recovery. Experiments demonstrate that our framework generates high-quality data with minimal manpower and achieves a 90% success rate across diverse objects, including unseen instances. Comprehensive evaluations validate the system's effectiveness in developing dexterous manipulation capabilities. 6 authors · Oct 31, 2025
1 AINL-Eval 2025 Shared Task: Detection of AI-Generated Scientific Abstracts in Russian The rapid advancement of large language models (LLMs) has revolutionized text generation, making it increasingly difficult to distinguish between human- and AI-generated content. This poses a significant challenge to academic integrity, particularly in scientific publishing and multilingual contexts where detection resources are often limited. To address this critical gap, we introduce the AINL-Eval 2025 Shared Task, specifically focused on the detection of AI-generated scientific abstracts in Russian. We present a novel, large-scale dataset comprising 52,305 samples, including human-written abstracts across 12 diverse scientific domains and AI-generated counterparts from five state-of-the-art LLMs (GPT-4-Turbo, Gemma2-27B, Llama3.3-70B, Deepseek-V3, and GigaChat-Lite). A core objective of the task is to challenge participants to develop robust solutions capable of generalizing to both (i) previously unseen scientific domains and (ii) models not included in the training data. The task was organized in two phases, attracting 10 teams and 159 submissions, with top systems demonstrating strong performance in identifying AI-generated content. We also establish a continuous shared task platform to foster ongoing research and long-term progress in this important area. The dataset and platform are publicly available at https://github.com/iis-research-team/AINL-Eval-2025. 4 authors · Aug 13, 2025
1 Balancing Shared and Task-Specific Representations: A Hybrid Approach to Depth-Aware Video Panoptic Segmentation In this work, we present Multiformer, a novel approach to depth-aware video panoptic segmentation (DVPS) based on the mask transformer paradigm. Our method learns object representations that are shared across segmentation, monocular depth estimation, and object tracking subtasks. In contrast to recent unified approaches that progressively refine a common object representation, we propose a hybrid method using task-specific branches within each decoder block, ultimately fusing them into a shared representation at the block interfaces. Extensive experiments on the Cityscapes-DVPS and SemKITTI-DVPS datasets demonstrate that Multiformer achieves state-of-the-art performance across all DVPS metrics, outperforming previous methods by substantial margins. With a ResNet-50 backbone, Multiformer surpasses the previous best result by 3.0 DVPQ points while also improving depth estimation accuracy. Using a Swin-B backbone, Multiformer further improves performance by 4.0 DVPQ points. Multiformer also provides valuable insights into the design of multi-task decoder architectures. 1 authors · Dec 10, 2024 1
1 Harnessing Shared Relations via Multimodal Mixup Contrastive Learning for Multimodal Classification Deep multimodal learning has shown remarkable success by leveraging contrastive learning to capture explicit one-to-one relations across modalities. However, real-world data often exhibits shared relations beyond simple pairwise associations. We propose M3CoL, a Multimodal Mixup Contrastive Learning approach to capture nuanced shared relations inherent in multimodal data. Our key contribution is a Mixup-based contrastive loss that learns robust representations by aligning mixed samples from one modality with their corresponding samples from other modalities thereby capturing shared relations between them. For multimodal classification tasks, we introduce a framework that integrates a fusion module with unimodal prediction modules for auxiliary supervision during training, complemented by our proposed Mixup-based contrastive loss. Through extensive experiments on diverse datasets (N24News, ROSMAP, BRCA, and Food-101), we demonstrate that M3CoL effectively captures shared multimodal relations and generalizes across domains. It outperforms state-of-the-art methods on N24News, ROSMAP, and BRCA, while achieving comparable performance on Food-101. Our work highlights the significance of learning shared relations for robust multimodal learning, opening up promising avenues for future research. Our code is publicly available at https://github.com/RaghavSinghal10/M3CoL. 5 authors · Sep 26, 2024
1 Sparsely Shared LoRA on Whisper for Child Speech Recognition Whisper is a powerful automatic speech recognition (ASR) model. Nevertheless, its zero-shot performance on low-resource speech requires further improvement. Child speech, as a representative type of low-resource speech, is leveraged for adaptation. Recently, parameter-efficient fine-tuning (PEFT) in NLP was shown to be comparable and even better than full fine-tuning, while only needing to tune a small set of trainable parameters. However, current PEFT methods have not been well examined for their effectiveness on Whisper. In this paper, only parameter composition types of PEFT approaches such as LoRA and Bitfit are investigated as they do not bring extra inference costs. Different popular PEFT methods are examined. Particularly, we compare LoRA and AdaLoRA and figure out the learnable rank coefficient is a good design. Inspired by the sparse rank distribution allocated by AdaLoRA, a novel PEFT approach Sparsely Shared LoRA (S2-LoRA) is proposed. The two low-rank decomposed matrices are globally shared. Each weight matrix only has to maintain its specific rank coefficients that are constrained to be sparse. Experiments on low-resource Chinese child speech show that with much fewer trainable parameters, S2-LoRA can achieve comparable in-domain adaptation performance to AdaLoRA and exhibit better generalization ability on out-of-domain data. In addition, the rank distribution automatically learned by S2-LoRA is found to have similar patterns to AdaLoRA's allocation. 4 authors · Sep 20, 2023
1 Findings of the The RuATD Shared Task 2022 on Artificial Text Detection in Russian We present the shared task on artificial text detection in Russian, which is organized as a part of the Dialogue Evaluation initiative, held in 2022. The shared task dataset includes texts from 14 text generators, i.e., one human writer and 13 text generative models fine-tuned for one or more of the following generation tasks: machine translation, paraphrase generation, text summarization, text simplification. We also consider back-translation and zero-shot generation approaches. The human-written texts are collected from publicly available resources across multiple domains. The shared task consists of two sub-tasks: (i) to determine if a given text is automatically generated or written by a human; (ii) to identify the author of a given text. The first task is framed as a binary classification problem. The second task is a multi-class classification problem. We provide count-based and BERT-based baselines, along with the human evaluation on the first sub-task. A total of 30 and 8 systems have been submitted to the binary and multi-class sub-tasks, correspondingly. Most teams outperform the baselines by a wide margin. We publicly release our codebase, human evaluation results, and other materials in our GitHub repository (https://github.com/dialogue-evaluation/RuATD). 10 authors · Jun 3, 2022
- MAGMaR Shared Task System Description: Video Retrieval with OmniEmbed Effective video retrieval remains challenging due to the complexity of integrating visual, auditory, and textual modalities. In this paper, we explore unified retrieval methods using OmniEmbed, a powerful multimodal embedding model from the Tevatron 2.0 toolkit, in the context of the MAGMaR shared task. Evaluated on the comprehensive MultiVENT 2.0 dataset, OmniEmbed generates unified embeddings for text, images, audio, and video, enabling robust multimodal retrieval. By finetuning OmniEmbed with the combined multimodal data--visual frames, audio tracks, and textual descriptions provided in MultiVENT 2.0, we achieve substantial improvements in complex, multilingual video retrieval tasks. Our submission achieved the highest score on the MAGMaR shared task leaderboard among public submissions as of May 20th, 2025, highlighting the practical effectiveness of our unified multimodal retrieval approach. Model checkpoint in this work is opensourced. 5 authors · Jun 11, 2025
- LADICA: A Large Shared Display Interface for Generative AI Cognitive Assistance in Co-Located Team Collaboration Large shared displays, such as digital whiteboards, are useful for supporting co-located team collaborations by helping members perform cognitive tasks such as brainstorming, organizing ideas, and making comparisons. While recent advancement in Large Language Models (LLMs) has catalyzed AI support for these displays, most existing systems either only offer limited capabilities or diminish human control, neglecting the potential benefits of natural group dynamics. Our formative study identified cognitive challenges teams encounter, such as diverse ideation, knowledge sharing, mutual awareness, idea organization, and synchronization of live discussions with the external workspace. In response, we introduce LADICA, a large shared display interface that helps collaborative teams brainstorm, organize, and analyze ideas through multiple analytical lenses, while fostering mutual awareness of ideas and concepts. Furthermore, LADICA facilitates the real-time extraction of key information from verbal discussions and identifies relevant entities. A lab study confirmed LADICA's usability and usefulness. 5 authors · Sep 20, 2024
- ArAIEval Shared Task: Propagandistic Techniques Detection in Unimodal and Multimodal Arabic Content We present an overview of the second edition of the ArAIEval shared task, organized as part of the ArabicNLP 2024 conference co-located with ACL 2024. In this edition, ArAIEval offers two tasks: (i) detection of propagandistic textual spans with persuasion techniques identification in tweets and news articles, and (ii) distinguishing between propagandistic and non-propagandistic memes. A total of 14 teams participated in the final evaluation phase, with 6 and 9 teams participating in Tasks 1 and 2, respectively. Finally, 11 teams submitted system description papers. Across both tasks, we observed that fine-tuning transformer models such as AraBERT was at the core of the majority of the participating systems. We provide a description of the task setup, including a description of the dataset construction and the evaluation setup. We further provide a brief overview of the participating systems. All datasets and evaluation scripts are released to the research community (https://araieval.gitlab.io/). We hope this will enable further research on these important tasks in Arabic. 7 authors · Jul 5, 2024
- ArAIEval Shared Task: Persuasion Techniques and Disinformation Detection in Arabic Text We present an overview of the ArAIEval shared task, organized as part of the first ArabicNLP 2023 conference co-located with EMNLP 2023. ArAIEval offers two tasks over Arabic text: (i) persuasion technique detection, focusing on identifying persuasion techniques in tweets and news articles, and (ii) disinformation detection in binary and multiclass setups over tweets. A total of 20 teams participated in the final evaluation phase, with 14 and 16 teams participating in Tasks 1 and 2, respectively. Across both tasks, we observed that fine-tuning transformer models such as AraBERT was at the core of the majority of the participating systems. We provide a description of the task setup, including a description of the dataset construction and the evaluation setup. We further give a brief overview of the participating systems. All datasets and evaluation scripts from the shared task are released to the research community. (https://araieval.gitlab.io/) We hope this will enable further research on these important tasks in Arabic. 8 authors · Nov 6, 2023
- Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared Pre-trained Language Models Parameter-shared pre-trained language models (PLMs) have emerged as a successful approach in resource-constrained environments, enabling substantial reductions in model storage and memory costs without significant performance compromise. However, it is important to note that parameter sharing does not alleviate computational burdens associated with inference, thus impeding its practicality in situations characterized by limited stringent latency requirements or computational resources. Building upon neural ordinary differential equations (ODEs), we introduce a straightforward technique to enhance the inference efficiency of parameter-shared PLMs. Additionally, we propose a simple pre-training technique that leads to fully or partially shared models capable of achieving even greater inference acceleration. The experimental results demonstrate the effectiveness of our methods on both autoregressive and autoencoding PLMs, providing novel insights into more efficient utilization of parameter-shared models in resource-constrained settings. 8 authors · Oct 19, 2023
- Learning Shared Safety Constraints from Multi-task Demonstrations Regardless of the particular task we want them to perform in an environment, there are often shared safety constraints we want our agents to respect. For example, regardless of whether it is making a sandwich or clearing the table, a kitchen robot should not break a plate. Manually specifying such a constraint can be both time-consuming and error-prone. We show how to learn constraints from expert demonstrations of safe task completion by extending inverse reinforcement learning (IRL) techniques to the space of constraints. Intuitively, we learn constraints that forbid highly rewarding behavior that the expert could have taken but chose not to. Unfortunately, the constraint learning problem is rather ill-posed and typically leads to overly conservative constraints that forbid all behavior that the expert did not take. We counter this by leveraging diverse demonstrations that naturally occur in multi-task settings to learn a tighter set of constraints. We validate our method with simulation experiments on high-dimensional continuous control tasks. 6 authors · Sep 1, 2023
- The Shared Task on Gender Rewriting In this paper, we present the results and findings of the Shared Task on Gender Rewriting, which was organized as part of the Seventh Arabic Natural Language Processing Workshop. The task of gender rewriting refers to generating alternatives of a given sentence to match different target user gender contexts (e.g., female speaker with a male listener, a male speaker with a male listener, etc.). This requires changing the grammatical gender (masculine or feminine) of certain words referring to the users. In this task, we focus on Arabic, a gender-marking morphologically rich language. A total of five teams from four countries participated in the shared task. 14 authors · Oct 22, 2022
- DialogSum Challenge: Results of the Dialogue Summarization Shared Task We report the results of DialogSum Challenge, the shared task on summarizing real-life scenario dialogues at INLG 2022. Four teams participate in this shared task and three submit their system reports, exploring different methods to improve the performance of dialogue summarization. Although there is a great improvement over the baseline models regarding automatic evaluation metrics, such as Rouge scores, we find that there is a salient gap between model generated outputs and human annotated summaries by human evaluation from multiple aspects. These findings demonstrate the difficulty of dialogue summarization and suggest that more fine-grained evaluatuion metrics are in need. 4 authors · Aug 7, 2022
- NADI 2021: The Second Nuanced Arabic Dialect Identification Shared Task We present the findings and results of the Second Nuanced Arabic Dialect Identification Shared Task (NADI 2021). This Shared Task includes four subtasks: country-level Modern Standard Arabic (MSA) identification (Subtask 1.1), country-level dialect identification (Subtask 1.2), province-level MSA identification (Subtask 2.1), and province-level sub-dialect identification (Subtask 2.2). The shared task dataset covers a total of 100 provinces from 21 Arab countries, collected from the Twitter domain. A total of 53 teams from 23 countries registered to participate in the tasks, thus reflecting the interest of the community in this area. We received 16 submissions for Subtask 1.1 from five teams, 27 submissions for Subtask 1.2 from eight teams, 12 submissions for Subtask 2.1 from four teams, and 13 Submissions for subtask 2.2 from four teams. 5 authors · Mar 3, 2021
- Generating Shared Latent Variables for Robots to Imitate Human Movements and Understand their Physical Limitations Assistive robotics and particularly robot coaches may be very helpful for rehabilitation healthcare. In this context, we propose a method based on Gaussian Process Latent Variable Model (GP-LVM) to transfer knowledge between a physiotherapist, a robot coach and a patient. Our model is able to map visual human body features to robot data in order to facilitate the robot learning and imitation. In addition , we propose to extend the model to adapt robots' understanding to patient's physical limitations during the assessment of rehabilitation exercises. Experimental evaluation demonstrates promising results for both robot imitation and model adaptation according to the patients' limitations. 2 authors · Oct 11, 2018
5 The Semantic Hub Hypothesis: Language Models Share Semantic Representations Across Languages and Modalities Modern language models can process inputs across diverse languages and modalities. We hypothesize that models acquire this capability through learning a shared representation space across heterogeneous data types (e.g., different languages and modalities), which places semantically similar inputs near one another, even if they are from different modalities/languages. We term this the semantic hub hypothesis, following the hub-and-spoke model from neuroscience (Patterson et al., 2007) which posits that semantic knowledge in the human brain is organized through a transmodal semantic "hub" which integrates information from various modality-specific "spokes" regions. We first show that model representations for semantically equivalent inputs in different languages are similar in the intermediate layers, and that this space can be interpreted using the model's dominant pretraining language via the logit lens. This tendency extends to other data types, including arithmetic expressions, code, and visual/audio inputs. Interventions in the shared representation space in one data type also predictably affect model outputs in other data types, suggesting that this shared representations space is not simply a vestigial byproduct of large-scale training on broad data, but something that is actively utilized by the model during input processing. 5 authors · Nov 7, 2024 2
1 Controlling What You Share: Assessing Language Model Adherence to Privacy Preferences Large language models (LLMs) are primarily accessed via commercial APIs, but this often requires users to expose their data to service providers. In this paper, we explore how users can stay in control of their data by using privacy profiles: simple natural language instructions that say what should and should not be revealed. We build a framework where a local model uses these instructions to rewrite queries, only hiding details deemed sensitive by the user, before sending them to an external model, thus balancing privacy with performance. To support this research, we introduce PEEP, a multilingual dataset of real user queries annotated to mark private content and paired with synthetic privacy profiles. Our experiments with lightweight LLMs show they can follow these instructions to some extent, but also face consistent challenges, highlighting the need for models that better understand and comply with user-defined privacy preferences. 3 authors · Jul 7, 2025
1 Large Language Models Share Representations of Latent Grammatical Concepts Across Typologically Diverse Languages Human bilinguals often use similar brain regions to process multiple languages, depending on when they learned their second language and their proficiency. In large language models (LLMs), how are multiple languages learned and encoded? In this work, we explore the extent to which LLMs share representations of morphosyntactic concepts such as grammatical number, gender, and tense across languages. We train sparse autoencoders on Llama-3-8B and Aya-23-8B, and demonstrate that abstract grammatical concepts are often encoded in feature directions shared across many languages. We use causal interventions to verify the multilingual nature of these representations; specifically, we show that ablating only multilingual features decreases classifier performance to near-chance across languages. We then use these features to precisely modify model behavior in a machine translation task; this demonstrates both the generality and selectivity of these feature's roles in the network. Our findings suggest that even models trained predominantly on English data can develop robust, cross-lingual abstractions of morphosyntactic concepts. 4 authors · Jan 10, 2025
1 Head-wise Shareable Attention for Large Language Models Large Language Models (LLMs) suffer from huge number of parameters, which restricts their deployment on edge devices. Weight sharing is one promising solution that encourages weight reuse, effectively reducing memory usage with less performance drop. However, current weight sharing techniques primarily focus on small-scale models like BERT and employ coarse-grained sharing rules, e.g., layer-wise. This becomes limiting given the prevalence of LLMs and sharing an entire layer or block obviously diminishes the flexibility of weight sharing. In this paper, we present a perspective on $textbf{head-wise shareable attention for large language models}. We further propose two memory-efficient methods that share parameters across attention heads, with a specific focus on LLMs. Both of them use the same dynamic strategy to select the shared weight matrices. The first method directly reuses the pre-trained weights without retraining, denoted as DirectShare. The second method first post-trains with constraint on weight matrix similarity and then shares, denoted as PostShare$. Experimental results reveal our head-wise shared models still maintain satisfactory capabilities, demonstrating the feasibility of fine-grained weight sharing applied to LLMs. 3 authors · Feb 18, 2024
1 Large Language Models can Share Images, Too! This paper explores the image-sharing capability of Large Language Models (LLMs), such as InstructGPT, ChatGPT, and GPT-4, in a zero-shot setting, without the help of visual foundation models. Inspired by the two-stage process of image-sharing in human dialogues, we propose a two-stage framework that allows LLMs to predict potential image-sharing turns and generate related image descriptions using our effective restriction-based prompt template. With extensive experiments, we unlock the image-sharing capability of LLMs in zero-shot prompting, with GPT-4 achieving the best performance. Additionally, we uncover the emergent image-sharing ability in zero-shot prompting, demonstrating the effectiveness of restriction-based prompts in both stages of our framework. Based on this framework, we augment the PhotoChat dataset with images generated by Stable Diffusion at predicted turns, namely PhotoChat++. To our knowledge, this is the first study to assess the image-sharing ability of LLMs in a zero-shot setting without visual foundation models. The source code and the dataset will be released after publication. 3 authors · Oct 23, 2023
- Causal Interventions Reveal Shared Structure Across English Filler-Gap Constructions Large Language Models (LLMs) have emerged as powerful sources of evidence for linguists seeking to develop theories of syntax. In this paper, we argue that causal interpretability methods, applied to LLMs, can greatly enhance the value of such evidence by helping us characterize the abstract mechanisms that LLMs learn to use. Our empirical focus is a set of English filler-gap dependency constructions (e.g., questions, relative clauses). Linguistic theories largely agree that these constructions share many properties. Using experiments based in Distributed Interchange Interventions, we show that LLMs converge on similar abstract analyses of these constructions. These analyses also reveal previously overlooked factors -- relating to frequency, filler type, and surrounding context -- that could motivate changes to standard linguistic theory. Overall, these results suggest that mechanistic, internal analyses of LLMs can push linguistic theory forward. 3 authors · May 21, 2025
- Competing for Shareable Arms in Multi-Player Multi-Armed Bandits Competitions for shareable and limited resources have long been studied with strategic agents. In reality, agents often have to learn and maximize the rewards of the resources at the same time. To design an individualized competing policy, we model the competition between agents in a novel multi-player multi-armed bandit (MPMAB) setting where players are selfish and aim to maximize their own rewards. In addition, when several players pull the same arm, we assume that these players averagely share the arms' rewards by expectation. Under this setting, we first analyze the Nash equilibrium when arms' rewards are known. Subsequently, we propose a novel SelfishMPMAB with Averaging Allocation (SMAA) approach based on the equilibrium. We theoretically demonstrate that SMAA could achieve a good regret guarantee for each player when all players follow the algorithm. Additionally, we establish that no single selfish player can significantly increase their rewards through deviation, nor can they detrimentally affect other players' rewards without incurring substantial losses for themselves. We finally validate the effectiveness of the method in extensive synthetic experiments. 5 authors · May 30, 2023
- Should ChatGPT and Bard Share Revenue with Their Data Providers? A New Business Model for the AI Era With various AI tools such as ChatGPT becoming increasingly popular, we are entering a true AI era. We can foresee that exceptional AI tools will soon reap considerable profits. A crucial question arise: should AI tools share revenue with their training data providers in additional to traditional stakeholders and shareholders? The answer is Yes. Large AI tools, such as large language models, always require more and better quality data to continuously improve, but current copyright laws limit their access to various types of data. Sharing revenue between AI tools and their data providers could transform the current hostile zero-sum game relationship between AI tools and a majority of copyrighted data owners into a collaborative and mutually beneficial one, which is necessary to facilitate the development of a virtuous cycle among AI tools, their users and data providers that drives forward AI technology and builds a healthy AI ecosystem. However, current revenue-sharing business models do not work for AI tools in the forthcoming AI era, since the most widely used metrics for website-based traffic and action, such as clicks, will be replaced by new metrics such as prompts and cost per prompt for generative AI tools. A completely new revenue-sharing business model, which must be almost independent of AI tools and be easily explained to data providers, needs to establish a prompt-based scoring system to measure data engagement of each data provider. This paper systematically discusses how to build such a scoring system for all data providers for AI tools based on classification and content similarity models, and outlines the requirements for AI tools or third parties to build it. Sharing revenue with data providers using such a scoring system would encourage more data owners to participate in the revenue-sharing program. This will be a utilitarian AI era where all parties benefit. 1 authors · May 4, 2023
4 On the Acquisition of Shared Grammatical Representations in Bilingual Language Models While crosslingual transfer is crucial to contemporary language models' multilingual capabilities, how it occurs is not well understood. In this paper, we ask what happens to a monolingual language model when it begins to be trained on a second language. Specifically, we train small bilingual models for which we control the amount of data for each language and the order of language exposure. To find evidence of shared multilingual representations, we turn to structural priming, a method used to study grammatical representations in humans. We first replicate previous crosslingual structural priming results and find that after controlling for training data quantity and language exposure, there are asymmetrical effects across language pairs and directions. We argue that this asymmetry may shape hypotheses about human structural priming effects. We also find that structural priming effects are less robust for less similar language pairs, highlighting potential limitations of crosslingual transfer learning and shared representations for typologically diverse languages. 4 authors · Mar 5, 2025 1
4 1-800-SHARED-TASKS @ NLU of Devanagari Script Languages: Detection of Language, Hate Speech, and Targets using LLMs This paper presents a detailed system description of our entry for the CHiPSAL 2025 shared task, focusing on language detection, hate speech identification, and target detection in Devanagari script languages. We experimented with a combination of large language models and their ensembles, including MuRIL, IndicBERT, and Gemma-2, and leveraged unique techniques like focal loss to address challenges in the natural understanding of Devanagari languages, such as multilingual processing and class imbalance. Our approach achieved competitive results across all tasks: F1 of 0.9980, 0.7652, and 0.6804 for Sub-tasks A, B, and C respectively. This work provides insights into the effectiveness of transformer models in tasks with domain-specific and linguistic challenges, as well as areas for potential improvement in future iterations. 7 authors · Nov 11, 2024
2 BSharedRAG: Backbone Shared Retrieval-Augmented Generation for the E-commerce Domain Retrieval Augmented Generation (RAG) system is important in domains such as e-commerce, which has many long-tail entities and frequently updated information. Most existing works adopt separate modules for retrieval and generation, which may be suboptimal since the retrieval task and the generation task cannot benefit from each other to improve performance. We propose a novel Backbone Shared RAG framework (BSharedRAG). It first uses a domain-specific corpus to continually pre-train a base model as a domain-specific backbone model and then trains two plug-and-play Low-Rank Adaptation (LoRA) modules based on the shared backbone to minimize retrieval and generation losses respectively. Experimental results indicate that our proposed BSharedRAG outperforms baseline models by 5% and 13% in Hit@3 upon two datasets in retrieval evaluation and by 23% in terms of BLEU-3 in generation evaluation. Our codes, models, and dataset are available at https://bsharedrag.github.io. 5 authors · Sep 30, 2024
1 SLaM-DiMM: Shared Latent Modeling for Diffusion Based Missing Modality Synthesis in MRI Brain MRI scans are often found in four modalities, consisting of T1-weighted with and without contrast enhancement (T1ce and T1w), T2-weighted imaging (T2w), and Flair. Leveraging complementary information from these different modalities enables models to learn richer, more discriminative features for understanding brain anatomy, which could be used in downstream tasks such as anomaly detection. However, in clinical practice, not all MRI modalities are always available due to various reasons. This makes missing modality generation a critical challenge in medical image analysis. In this paper, we propose SLaM-DiMM, a novel missing modality generation framework that harnesses the power of diffusion models to synthesize any of the four target MRI modalities from other available modalities. Our approach not only generates high-fidelity images but also ensures structural coherence across the depth of the volume through a dedicated coherence enhancement mechanism. Qualitative and quantitative evaluations on the BraTS-Lighthouse-2025 Challenge dataset demonstrate the effectiveness of the proposed approach in synthesizing anatomically plausible and structurally consistent results. Code is available at https://github.com/BheeshmSharma/SLaM-DiMM-MICCAI-BraTS-Challenge-2025. 3 authors · Sep 19, 2025
1 Beyond KV Caching: Shared Attention for Efficient LLMs The efficiency of large language models (LLMs) remains a critical challenge, particularly in contexts where computational resources are limited. Traditional attention mechanisms in these models, while powerful, require significant computational and memory resources due to the necessity of recalculating and storing attention weights across different layers. This paper introduces a novel Shared Attention (SA) mechanism, designed to enhance the efficiency of LLMs by directly sharing computed attention weights across multiple layers. Unlike previous methods that focus on sharing intermediate Key-Value (KV) caches, our approach utilizes the isotropic tendencies of attention distributions observed in advanced LLMs post-pretraining to reduce both the computational flops and the size of the KV cache required during inference. We empirically demonstrate that implementing SA across various LLMs results in minimal accuracy loss on standard benchmarks. Our findings suggest that SA not only conserves computational resources but also maintains robust model performance, thereby facilitating the deployment of more efficient LLMs in resource-constrained environments. 2 authors · Jul 13, 2024
1 AXOLOTL'24 Shared Task on Multilingual Explainable Semantic Change Modeling This paper describes the organization and findings of AXOLOTL'24, the first multilingual explainable semantic change modeling shared task. We present new sense-annotated diachronic semantic change datasets for Finnish and Russian which were employed in the shared task, along with a surprise test-only German dataset borrowed from an existing source. The setup of AXOLOTL'24 is new to the semantic change modeling field, and involves subtasks of identifying unknown (novel) senses and providing dictionary-like definitions to these senses. The methods of the winning teams are described and compared, thus paving a path towards explainability in computational approaches to historical change of meaning. 6 authors · Jul 4, 2024
1 Concept-Centric Transformers: Enhancing Model Interpretability through Object-Centric Concept Learning within a Shared Global Workspace Many interpretable AI approaches have been proposed to provide plausible explanations for a model's decision-making. However, configuring an explainable model that effectively communicates among computational modules has received less attention. A recently proposed shared global workspace theory showed that networks of distributed modules can benefit from sharing information with a bottlenecked memory because the communication constraints encourage specialization, compositionality, and synchronization among the modules. Inspired by this, we propose Concept-Centric Transformers, a simple yet effective configuration of the shared global workspace for interpretability, consisting of: i) an object-centric-based memory module for extracting semantic concepts from input features, ii) a cross-attention mechanism between the learned concept and input embeddings, and iii) standard classification and explanation losses to allow human analysts to directly assess an explanation for the model's classification reasoning. We test our approach against other existing concept-based methods on classification tasks for various datasets, including CIFAR100, CUB-200-2011, and ImageNet, and we show that our model achieves better classification accuracy than all baselines across all problems but also generates more consistent concept-based explanations of classification output. 3 authors · May 25, 2023
1 Acronym Identification and Disambiguation Shared Tasks for Scientific Document Understanding Acronyms are the short forms of longer phrases and they are frequently used in writing, especially scholarly writing, to save space and facilitate the communication of information. As such, every text understanding tool should be capable of recognizing acronyms in text (i.e., acronym identification) and also finding their correct meaning (i.e., acronym disambiguation). As most of the prior works on these tasks are restricted to the biomedical domain and use unsupervised methods or models trained on limited datasets, they fail to perform well for scientific document understanding. To push forward research in this direction, we have organized two shared task for acronym identification and acronym disambiguation in scientific documents, named AI@SDU and AD@SDU, respectively. The two shared tasks have attracted 52 and 43 participants, respectively. While the submitted systems make substantial improvements compared to the existing baselines, there are still far from the human-level performance. This paper reviews the two shared tasks and the prominent participating systems for each of them. 5 authors · Dec 21, 2020
1 Time-Resolved fMRI Shared Response Model using Gaussian Process Factor Analysis Multi-subject fMRI studies are challenging due to the high variability of both brain anatomy and functional brain topographies across participants. An effective way of aggregating multi-subject fMRI data is to extract a shared representation that filters out unwanted variability among subjects. Some recent work has implemented probabilistic models to extract a shared representation in task fMRI. In the present work, we improve upon these models by incorporating temporal information in the common latent structures. We introduce a new model, Shared Gaussian Process Factor Analysis (S-GPFA), that discovers shared latent trajectories and subject-specific functional topographies, while modelling temporal correlation in fMRI data. We demonstrate the efficacy of our model in revealing ground truth latent structures using simulated data, and replicate experimental performance of time-segment matching and inter-subject similarity on the publicly available Raider and Sherlock datasets. We further test the utility of our model by analyzing its learned model parameters in the large multi-site SPINS dataset, on a social cognition task from participants with and without schizophrenia. 6 authors · Jun 9, 2020
- CLIP4VI-ReID: Learning Modality-shared Representations via CLIP Semantic Bridge for Visible-Infrared Person Re-identification This paper proposes a novel CLIP-driven modality-shared representation learning network named CLIP4VI-ReID for VI-ReID task, which consists of Text Semantic Generation (TSG), Infrared Feature Embedding (IFE), and High-level Semantic Alignment (HSA). Specifically, considering the huge gap in the physical characteristics between natural images and infrared images, the TSG is designed to generate text semantics only for visible images, thereby enabling preliminary visible-text modality alignment. Then, the IFE is proposed to rectify the feature embeddings of infrared images using the generated text semantics. This process injects id-related semantics into the shared image encoder, enhancing its adaptability to the infrared modality. Besides, with text serving as a bridge, it enables indirect visible-infrared modality alignment. Finally, the HSA is established to refine the high-level semantic alignment. This process ensures that the fine-tuned text semantics only contain id-related information, thereby achieving more accurate cross-modal alignment and enhancing the discriminability of the learned modal-shared representations. Extensive experimental results demonstrate that the proposed CLIP4VI-ReID achieves superior performance than other state-of-the-art methods on some widely used VI-ReID datasets. 7 authors · Nov 13, 2025
- BUSTED at AraGenEval Shared Task: A Comparative Study of Transformer-Based Models for Arabic AI-Generated Text Detection This paper details our submission to the Ara- GenEval Shared Task on Arabic AI-generated text detection, where our team, BUSTED, se- cured 5th place. We investigated the effec- tiveness of three pre-trained transformer mod- els: AraELECTRA, CAMeLBERT, and XLM- RoBERTa. Our approach involved fine-tuning each model on the provided dataset for a binary classification task. Our findings revealed a sur- prising result: the multilingual XLM-RoBERTa model achieved the highest performance with an F1 score of 0.7701, outperforming the spe- cialized Arabic models. This work underscores the complexities of AI-generated text detection and highlights the strong generalization capa- bilities of multilingual models. 3 authors · Oct 23, 2025
- PalmX 2025: The First Shared Task on Benchmarking LLMs on Arabic and Islamic Culture Large Language Models (LLMs) inherently reflect the vast data distributions they encounter during their pre-training phase. As this data is predominantly sourced from the web, there is a high chance it will be skewed towards high-resourced languages and cultures, such as those of the West. Consequently, LLMs often exhibit a diminished understanding of certain communities, a gap that is particularly evident in their knowledge of Arabic and Islamic cultures. This issue becomes even more pronounced with increasingly under-represented topics. To address this critical challenge, we introduce PalmX 2025, the first shared task designed to benchmark the cultural competence of LLMs in these specific domains. The task is composed of two subtasks featuring multiple-choice questions (MCQs) in Modern Standard Arabic (MSA): General Arabic Culture and General Islamic Culture. These subtasks cover a wide range of topics, including traditions, food, history, religious practices, and language expressions from across 22 Arab countries. The initiative drew considerable interest, with 26 teams registering for Subtask 1 and 19 for Subtask 2, culminating in nine and six valid submissions, respectively. Our findings reveal that task-specific fine-tuning substantially boosts performance over baseline models. The top-performing systems achieved an accuracy of 72.15% on cultural questions and 84.22% on Islamic knowledge. Parameter-efficient fine-tuning emerged as the predominant and most effective approach among participants, while the utility of data augmentation was found to be domain-dependent. 6 authors · Sep 2, 2025
- NADI 2025: The First Multidialectal Arabic Speech Processing Shared Task We present the findings of the sixth Nuanced Arabic Dialect Identification (NADI 2025) Shared Task, which focused on Arabic speech dialect processing across three subtasks: spoken dialect identification (Subtask 1), speech recognition (Subtask 2), and diacritic restoration for spoken dialects (Subtask 3). A total of 44 teams registered, and during the testing phase, 100 valid submissions were received from eight unique teams. The distribution was as follows: 34 submissions for Subtask 1 "five teams{\ae}, 47 submissions for Subtask 2 "six teams", and 19 submissions for Subtask 3 "two teams". The best-performing systems achieved 79.8% accuracy on Subtask 1, 35.68/12.20 WER/CER (overall average) on Subtask 2, and 55/13 WER/CER on Subtask 3. These results highlight the ongoing challenges of Arabic dialect speech processing, particularly in dialect identification, recognition, and diacritic restoration. We also summarize the methods adopted by participating teams and briefly outline directions for future editions of NADI. 12 authors · Sep 2, 2025
- CVPD at QIAS 2025 Shared Task: An Efficient Encoder-Based Approach for Islamic Inheritance Reasoning Islamic inheritance law (Ilm al-Mawarith) requires precise identification of heirs and calculation of shares, which poses a challenge for AI. In this paper, we present a lightweight framework for solving multiple-choice inheritance questions using a specialised Arabic text encoder and Attentive Relevance Scoring (ARS). The system ranks answer options according to semantic relevance, and enables fast, on-device inference without generative reasoning. We evaluate Arabic encoders (MARBERT, ArabicBERT, AraBERT) and compare them with API-based LLMs (Gemini, DeepSeek) on the QIAS 2025 dataset. While large models achieve an accuracy of up to 87.6%, they require more resources and are context-dependent. Our MARBERT-based approach achieves 69.87% accuracy, presenting a compelling case for efficiency, on-device deployability, and privacy. While this is lower than the 87.6% achieved by the best-performing LLM, our work quantifies a critical trade-off between the peak performance of large models and the practical advantages of smaller, specialized systems in high-stakes domains. 5 authors · Aug 30, 2025
- ShaLa: Multimodal Shared Latent Space Modelling This paper presents a novel generative framework for learning shared latent representations across multimodal data. Many advanced multimodal methods focus on capturing all combinations of modality-specific details across inputs, which can inadvertently obscure the high-level semantic concepts that are shared across modalities. Notably, Multimodal VAEs with low-dimensional latent variables are designed to capture shared representations, enabling various tasks such as joint multimodal synthesis and cross-modal inference. However, multimodal VAEs often struggle to design expressive joint variational posteriors and suffer from low-quality synthesis. In this work, ShaLa addresses these challenges by integrating a novel architectural inference model and a second-stage expressive diffusion prior, which not only facilitates effective inference of shared latent representation but also significantly improves the quality of downstream multimodal synthesis. We validate ShaLa extensively across multiple benchmarks, demonstrating superior coherence and synthesis quality compared to state-of-the-art multimodal VAEs. Furthermore, ShaLa scales to many more modalities while prior multimodal VAEs have fallen short in capturing the increasing complexity of the shared latent space. 4 authors · Aug 24, 2025
- Semantic Convergence: Investigating Shared Representations Across Scaled LLMs We investigate feature universality in Gemma-2 language models (Gemma-2-2B and Gemma-2-9B), asking whether models with a four-fold difference in scale still converge on comparable internal concepts. Using the Sparse Autoencoder (SAE) dictionary-learning pipeline, we utilize SAEs on each model's residual-stream activations, align the resulting monosemantic features via activation correlation, and compare the matched feature spaces with SVCCA and RSA. Middle layers yield the strongest overlap, while early and late layers show far less similarity. Preliminary experiments extend the analysis from single tokens to multi-token subspaces, showing that semantically similar subspaces interact similarly with language models. These results strengthen the case that large language models carve the world into broadly similar, interpretable features despite size differences, reinforcing universality as a foundation for cross-model interpretability. 9 authors · Jul 21, 2025
- SemEval-2025 Task 3: Mu-SHROOM, the Multilingual Shared Task on Hallucinations and Related Observable Overgeneration Mistakes We present the Mu-SHROOM shared task which is focused on detecting hallucinations and other overgeneration mistakes in the output of instruction-tuned large language models (LLMs). Mu-SHROOM addresses general-purpose LLMs in 14 languages, and frames the hallucination detection problem as a span-labeling task. We received 2,618 submissions from 43 participating teams employing diverse methodologies. The large number of submissions underscores the interest of the community in hallucination detection. We present the results of the participating systems and conduct an empirical analysis to identify key factors contributing to strong performance in this task. We also emphasize relevant current challenges, notably the varying degree of hallucinations across languages and the high annotator disagreement when labeling hallucination spans. 18 authors · Apr 16, 2025
- 1-800-SHARED-TASKS at RegNLP: Lexical Reranking of Semantic Retrieval (LeSeR) for Regulatory Question Answering This paper presents the system description of our entry for the COLING 2025 RegNLP RIRAG (Regulatory Information Retrieval and Answer Generation) challenge, focusing on leveraging advanced information retrieval and answer generation techniques in regulatory domains. We experimented with a combination of embedding models, including Stella, BGE, CDE, and Mpnet, and leveraged fine-tuning and reranking for retrieving relevant documents in top ranks. We utilized a novel approach, LeSeR, which achieved competitive results with a recall@10 of 0.8201 and map@10 of 0.6655 for retrievals. This work highlights the transformative potential of natural language processing techniques in regulatory applications, offering insights into their capabilities for implementing a retrieval augmented generation system while identifying areas for future improvement in robustness and domain adaptation. 6 authors · Dec 8, 2024
- Bonafide at LegalLens 2024 Shared Task: Using Lightweight DeBERTa Based Encoder For Legal Violation Detection and Resolution In this work, we present two systems -- Named Entity Resolution (NER) and Natural Language Inference (NLI) -- for detecting legal violations within unstructured textual data and for associating these violations with potentially affected individuals, respectively. Both these systems are lightweight DeBERTa based encoders that outperform the LLM baselines. The proposed NER system achieved an F1 score of 60.01\% on Subtask A of the LegalLens challenge, which focuses on identifying violations. The proposed NLI system achieved an F1 score of 84.73\% on Subtask B of the LegalLens challenge, which focuses on resolving these violations by matching them with pre-existing legal complaints of class action cases. Our NER system ranked sixth and NLI system ranked fifth on the LegalLens leaderboard. We release the trained models and inference scripts. 1 authors · Oct 30, 2024
- CASA: Class-Agnostic Shared Attributes in Vision-Language Models for Efficient Incremental Object Detection Incremental object detection (IOD) is challenged by background shift, where background categories in sequential data may include previously learned or future classes. Inspired by the vision-language foundation models such as CLIP, these models capture shared attributes from extensive image-text paired data during pre-training. We propose a novel method utilizing attributes in vision-language foundation models for incremental object detection. Our method constructs a Class-Agnostic Shared Attribute base (CASA) to capture common semantic information among incremental classes. Specifically, we utilize large language models to generate candidate textual attributes and select the most relevant ones based on current training data, recording their significance in an attribute assignment matrix. For subsequent tasks, we freeze the retained attributes and continue selecting from the remaining candidates while updating the attribute assignment matrix accordingly. Furthermore, we employ OWL-ViT as our baseline, preserving the original parameters of the pre-trained foundation model. Our method adds only 0.7% to parameter storage through parameter-efficient fine-tuning to significantly enhance the scalability and adaptability of IOD. Extensive two-phase and multi-phase experiments on the COCO dataset demonstrate the state-of-the-art performance of our proposed method. 5 authors · Oct 8, 2024
- Heidelberg-Boston @ SIGTYP 2024 Shared Task: Enhancing Low-Resource Language Analysis With Character-Aware Hierarchical Transformers Historical languages present unique challenges to the NLP community, with one prominent hurdle being the limited resources available in their closed corpora. This work describes our submission to the constrained subtask of the SIGTYP 2024 shared task, focusing on PoS tagging, morphological tagging, and lemmatization for 13 historical languages. For PoS and morphological tagging we adapt a hierarchical tokenization method from Sun et al. (2023) and combine it with the advantages of the DeBERTa-V3 architecture, enabling our models to efficiently learn from every character in the training data. We also demonstrate the effectiveness of character-level T5 models on the lemmatization task. Pre-trained from scratch with limited data, our models achieved first place in the constrained subtask, nearly reaching the performance levels of the unconstrained task's winner. Our code is available at https://github.com/bowphs/SIGTYP-2024-hierarchical-transformers 2 authors · May 30, 2024
- Exploring Alignment in Shared Cross-lingual Spaces Despite their remarkable ability to capture linguistic nuances across diverse languages, questions persist regarding the degree of alignment between languages in multilingual embeddings. Drawing inspiration from research on high-dimensional representations in neural language models, we employ clustering to uncover latent concepts within multilingual models. Our analysis focuses on quantifying the alignment and overlap of these concepts across various languages within the latent space. To this end, we introduce two metrics and aimed at quantifying these aspects, enabling a deeper exploration of multilingual embeddings. Our study encompasses three multilingual models (mT5, mBERT, and XLM-R) and three downstream tasks (Machine Translation, Named Entity Recognition, and Sentiment Analysis). Key findings from our analysis include: i) deeper layers in the network demonstrate increased cross-lingual alignment due to the presence of language-agnostic concepts, ii) fine-tuning of the models enhances alignment within the latent space, and iii) such task-specific calibration helps in explaining the emergence of zero-shot capabilities in the models.The code is available at \url{https://github.com/baselmousi/multilingual-latent-concepts} 5 authors · May 23, 2024
- RAID: A Shared Benchmark for Robust Evaluation of Machine-Generated Text Detectors Many commercial and open-source models claim to detect machine-generated text with extremely high accuracy (99% or more). However, very few of these detectors are evaluated on shared benchmark datasets and even when they are, the datasets used for evaluation are insufficiently challenging-lacking variations in sampling strategy, adversarial attacks, and open-source generative models. In this work we present RAID: the largest and most challenging benchmark dataset for machine-generated text detection. RAID includes over 6 million generations spanning 11 models, 8 domains, 11 adversarial attacks and 4 decoding strategies. Using RAID, we evaluate the out-of-domain and adversarial robustness of 8 open- and 4 closed-source detectors and find that current detectors are easily fooled by adversarial attacks, variations in sampling strategies, repetition penalties, and unseen generative models. We release our data along with a leaderboard to encourage future research. 8 authors · May 13, 2024
- TartuNLP @ SIGTYP 2024 Shared Task: Adapting XLM-RoBERTa for Ancient and Historical Languages We present our submission to the unconstrained subtask of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical Languages for morphological annotation, POS-tagging, lemmatization, character- and word-level gap-filling. We developed a simple, uniform, and computationally lightweight approach based on the adapters framework using parameter-efficient fine-tuning. We applied the same adapter-based approach uniformly to all tasks and 16 languages by fine-tuning stacked language- and task-specific adapters. Our submission obtained an overall second place out of three submissions, with the first place in word-level gap-filling. Our results show the feasibility of adapting language models pre-trained on modern languages to historical and ancient languages via adapter training. 2 authors · Apr 19, 2024
- SwinMTL: A Shared Architecture for Simultaneous Depth Estimation and Semantic Segmentation from Monocular Camera Images This research paper presents an innovative multi-task learning framework that allows concurrent depth estimation and semantic segmentation using a single camera. The proposed approach is based on a shared encoder-decoder architecture, which integrates various techniques to improve the accuracy of the depth estimation and semantic segmentation task without compromising computational efficiency. Additionally, the paper incorporates an adversarial training component, employing a Wasserstein GAN framework with a critic network, to refine model's predictions. The framework is thoroughly evaluated on two datasets - the outdoor Cityscapes dataset and the indoor NYU Depth V2 dataset - and it outperforms existing state-of-the-art methods in both segmentation and depth estimation tasks. We also conducted ablation studies to analyze the contributions of different components, including pre-training strategies, the inclusion of critics, the use of logarithmic depth scaling, and advanced image augmentations, to provide a better understanding of the proposed framework. The accompanying source code is accessible at https://github.com/PardisTaghavi/SwinMTL. 3 authors · Mar 15, 2024
- An Empirical Study on Developers Shared Conversations with ChatGPT in GitHub Pull Requests and Issues ChatGPT has significantly impacted software development practices, providing substantial assistance to developers in a variety of tasks, including coding, testing, and debugging. Despite its widespread adoption, the impact of ChatGPT as an assistant in collaborative coding remains largely unexplored. In this paper, we analyze a dataset of 210 and 370 developers shared conversations with ChatGPT in GitHub pull requests (PRs) and issues. We manually examined the content of the conversations and characterized the dynamics of the sharing behavior, i.e., understanding the rationale behind the sharing, identifying the locations where the conversations were shared, and determining the roles of the developers who shared them. Our main observations are: (1) Developers seek ChatGPT assistance across 16 types of software engineering inquiries. In both conversations shared in PRs and issues, the most frequently encountered inquiry categories include code generation, conceptual questions, how-to guides, issue resolution, and code review. (2) Developers frequently engage with ChatGPT via multi-turn conversations where each prompt can fulfill various roles, such as unveiling initial or new tasks, iterative follow-up, and prompt refinement. Multi-turn conversations account for 33.2% of the conversations shared in PRs and 36.9% in issues. (3) In collaborative coding, developers leverage shared conversations with ChatGPT to facilitate their role-specific contributions, whether as authors of PRs or issues, code reviewers, or collaborators on issues. Our work serves as the first step towards understanding the dynamics between developers and ChatGPT in collaborative software development and opens up new directions for future research on the topic. 7 authors · Mar 15, 2024
- Multi-Task Multi-Agent Shared Layers are Universal Cognition of Multi-Agent Coordination Multi-agent reinforcement learning shines as the pinnacle of multi-agent systems, conquering intricate real-world challenges, fostering collaboration and coordination among agents, and unleashing the potential for intelligent decision-making across domains. However, training a multi-agent reinforcement learning network is a formidable endeavor, demanding substantial computational resources to interact with diverse environmental variables, extract state representations, and acquire decision-making knowledge. The recent breakthroughs in large-scale pre-trained models ignite our curiosity: Can we uncover shared knowledge in multi-agent reinforcement learning and leverage pre-trained models to expedite training for future tasks? Addressing this issue, we present an innovative multi-task learning approach that aims to extract and harness common decision-making knowledge, like cooperation and competition, across different tasks. Our approach involves concurrent training of multiple multi-agent tasks, with each task employing independent front-end perception layers while sharing back-end decision-making layers. This effective decoupling of state representation extraction from decision-making allows for more efficient training and better transferability. To evaluate the efficacy of our proposed approach, we conduct comprehensive experiments in two distinct environments: the StarCraft Multi-agent Challenge (SMAC) and the Google Research Football (GRF) environments. The experimental results unequivocally demonstrate the smooth transferability of the shared decision-making network to other tasks, thereby significantly reducing training costs and improving final performance. Furthermore, visualizations authenticate the presence of general multi-agent decision-making knowledge within the shared network layers, further validating the effectiveness of our approach. 6 authors · Dec 25, 2023
- CUNI Submission to MRL 2023 Shared Task on Multi-lingual Multi-task Information Retrieval We present the Charles University system for the MRL~2023 Shared Task on Multi-lingual Multi-task Information Retrieval. The goal of the shared task was to develop systems for named entity recognition and question answering in several under-represented languages. Our solutions to both subtasks rely on the translate-test approach. We first translate the unlabeled examples into English using a multilingual machine translation model. Then, we run inference on the translated data using a strong task-specific model. Finally, we project the labeled data back into the original language. To keep the inferred tags on the correct positions in the original language, we propose a method based on scoring the candidate positions using a label-sensitive translation model. In both settings, we experiment with finetuning the classification models on the translated data. However, due to a domain mismatch between the development data and the shared task validation and test sets, the finetuned models could not outperform our baselines. 2 authors · Oct 25, 2023
- The SIGMORPHON 2022 Shared Task on Morpheme Segmentation The SIGMORPHON 2022 shared task on morpheme segmentation challenged systems to decompose a word into a sequence of morphemes and covered most types of morphology: compounds, derivations, and inflections. Subtask 1, word-level morpheme segmentation, covered 5 million words in 9 languages (Czech, English, Spanish, Hungarian, French, Italian, Russian, Latin, Mongolian) and received 13 system submissions from 7 teams and the best system averaged 97.29% F1 score across all languages, ranging English (93.84%) to Latin (99.38%). Subtask 2, sentence-level morpheme segmentation, covered 18,735 sentences in 3 languages (Czech, English, Mongolian), received 10 system submissions from 3 teams, and the best systems outperformed all three state-of-the-art subword tokenization methods (BPE, ULM, Morfessor2) by 30.71% absolute. To facilitate error analysis and support any type of future studies, we released all system predictions, the evaluation script, and all gold standard datasets. 13 authors · Jun 15, 2022
- Yseop at FinSim-3 Shared Task 2021: Specializing Financial Domain Learning with Phrase Representations In this paper, we present our approaches for the FinSim-3 Shared Task 2021: Learning Semantic Similarities for the Financial Domain. The aim of this shared task is to correctly classify a list of given terms from the financial domain into the most relevant hypernym (or top-level) concept in an external ontology. For our system submission, we evaluate two methods: a Sentence-RoBERTa (SRoBERTa) embeddings model pre-trained on a custom corpus, and a dual word-sentence embeddings model that builds on the first method by improving the proposed baseline word embeddings construction using the FastText model to boost the classification performance. Our system ranks 2nd overall on both metrics, scoring 0.917 on Average Accuracy and 1.141 on Mean Rank. 3 authors · Aug 21, 2021
- Financial Document Causality Detection Shared Task (FinCausal 2020) We present the FinCausal 2020 Shared Task on Causality Detection in Financial Documents and the associated FinCausal dataset, and discuss the participating systems and results. Two sub-tasks are proposed: a binary classification task (Task 1) and a relation extraction task (Task 2). A total of 16 teams submitted runs across the two Tasks and 13 of them contributed with a system description paper. This workshop is associated to the Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation (FNP-FNS 2020), held at The 28th International Conference on Computational Linguistics (COLING'2020), Barcelona, Spain on September 12, 2020. 6 authors · Dec 4, 2020
- Aligning AI With Shared Human Values We show how to assess a language model's knowledge of basic concepts of morality. We introduce the ETHICS dataset, a new benchmark that spans concepts in justice, well-being, duties, virtues, and commonsense morality. Models predict widespread moral judgments about diverse text scenarios. This requires connecting physical and social world knowledge to value judgements, a capability that may enable us to steer chatbot outputs or eventually regularize open-ended reinforcement learning agents. With the ETHICS dataset, we find that current language models have a promising but incomplete ability to predict basic human ethical judgements. Our work shows that progress can be made on machine ethics today, and it provides a steppingstone toward AI that is aligned with human values. 7 authors · Aug 5, 2020
- MRQA 2019 Shared Task: Evaluating Generalization in Reading Comprehension We present the results of the Machine Reading for Question Answering (MRQA) 2019 shared task on evaluating the generalization capabilities of reading comprehension systems. In this task, we adapted and unified 18 distinct question answering datasets into the same format. Among them, six datasets were made available for training, six datasets were made available for development, and the final six were hidden for final evaluation. Ten teams submitted systems, which explored various ideas including data sampling, multi-task learning, adversarial training and ensembling. The best system achieved an average F1 score of 72.5 on the 12 held-out datasets, 10.7 absolute points higher than our initial baseline based on BERT. 6 authors · Oct 21, 2019
- Gendered Ambiguous Pronouns Shared Task: Boosting Model Confidence by Evidence Pooling This paper presents a strong set of results for resolving gendered ambiguous pronouns on the Gendered Ambiguous Pronouns shared task. The model presented here draws upon the strengths of state-of-the-art language and coreference resolution models, and introduces a novel evidence-based deep learning architecture. Injecting evidence from the coreference models compliments the base architecture, and analysis shows that the model is not hindered by their weaknesses, specifically gender bias. The modularity and simplicity of the architecture make it very easy to extend for further improvement and applicable to other NLP problems. Evaluation on GAP test data results in a state-of-the-art performance at 92.5% F1 (gender bias of 0.97), edging closer to the human performance of 96.6%. The end-to-end solution presented here placed 1st in the Kaggle competition, winning by a significant lead. The code is available at https://github.com/sattree/gap. 1 authors · Jun 3, 2019
- SemEval 2019 Shared Task: Cross-lingual Semantic Parsing with UCCA - Call for Participation We announce a shared task on UCCA parsing in English, German and French, and call for participants to submit their systems. UCCA is a cross-linguistically applicable framework for semantic representation, which builds on extensive typological work and supports rapid annotation. UCCA poses a challenge for existing parsing techniques, as it exhibits reentrancy (resulting in DAG structures), discontinuous structures and non-terminal nodes corresponding to complex semantic units. Given the success of recent semantic parsing shared tasks (on SDP and AMR), we expect the task to have a significant contribution to the advancement of UCCA parsing in particular, and semantic parsing in general. Furthermore, existing applications for semantic evaluation that are based on UCCA will greatly benefit from better automatic methods for UCCA parsing. The competition website is https://competitions.codalab.org/competitions/19160 6 authors · May 31, 2018
20 Hydragen: High-Throughput LLM Inference with Shared Prefixes Transformer-based large language models (LLMs) are now deployed to hundreds of millions of users. LLM inference is commonly performed on batches of sequences that share a prefix, such as few-shot examples or a chatbot system prompt. Decoding in this large-batch setting can be bottlenecked by the attention operation, which reads large key-value (KV) caches from memory and computes inefficient matrix-vector products for every sequence in the batch. In this work, we introduce Hydragen, a hardware-aware exact implementation of attention with shared prefixes. Hydragen computes attention over the shared prefix and unique suffixes separately. This decomposition enables efficient prefix attention by batching queries together across sequences, reducing redundant memory reads and enabling the use of hardware-friendly matrix multiplications. Our method can improve end-to-end LLM throughput by up to 32x against competitive baselines, with speedup growing with the batch size and shared prefix length. Hydragen also enables the use of very long shared contexts: with a high batch size, increasing the prefix length from 1K to 16K tokens decreases Hydragen throughput by less than 15%, while the throughput of baselines drops by over 90%. Hydragen generalizes beyond simple prefix-suffix decomposition and can be applied to tree-based prompt sharing patterns, allowing us to further reduce inference time on competitive programming problems by 55%. 6 authors · Feb 7, 2024 4
9 Do Vision and Language Models Share Concepts? A Vector Space Alignment Study Large-scale pretrained language models (LMs) are said to ``lack the ability to connect utterances to the world'' (Bender and Koller, 2020), because they do not have ``mental models of the world' '(Mitchell and Krakauer, 2023). If so, one would expect LM representations to be unrelated to representations induced by vision models. We present an empirical evaluation across four families of LMs (BERT, GPT-2, OPT and LLaMA-2) and three vision model architectures (ResNet, SegFormer, and MAE). Our experiments show that LMs partially converge towards representations isomorphic to those of vision models, subject to dispersion, polysemy and frequency. This has important implications for both multi-modal processing and the LM understanding debate (Mitchell and Krakauer, 2023). 4 authors · Feb 13, 2023 3
4 Prefix Grouper: Efficient GRPO Training through Shared-Prefix Forward Group Relative Policy Optimization (GRPO) enhances policy learning by computing gradients from relative comparisons among candidate outputs that share a common input prefix. Despite its effectiveness, GRPO introduces substantial computational overhead when processing long shared prefixes, which must be redundantly encoded for each group member. This inefficiency becomes a major scalability bottleneck in long-context learning scenarios. We propose Prefix Grouper, an efficient GRPO training algorithm that eliminates redundant prefix computation via a Shared-Prefix Forward strategy. In particular, by restructuring self-attention into two parts, our method enables the shared prefix to be encoded only once, while preserving full differentiability and compatibility with end-to-end training. We provide both theoretical and empirical evidence that Prefix Grouper is training-equivalent to standard GRPO: it yields identical forward outputs and backward gradients, ensuring that the optimization dynamics and final policy performance remain unchanged. Empirically, our experiments confirm that Prefix Grouper achieves consistent results while significantly reducing the computational cost of training, particularly in long-prefix scenarios. The proposed method is fully plug-and-play: it is compatible with existing GRPO-based architectures and can be seamlessly integrated into current training pipelines as a drop-in replacement, requiring no structural modifications and only minimal changes to input construction and attention computation. Prefix Grouper enables the use of larger group sizes under the same computational budget, thereby improving the scalability of GRPO to more complex tasks and larger models. Code is now available at https://github.com/johncaged/PrefixGrouper 8 authors · Jun 5, 2025 2
1 Memorized Images in Diffusion Models share a Subspace that can be Located and Deleted Large-scale text-to-image diffusion models excel in generating high-quality images from textual inputs, yet concerns arise as research indicates their tendency to memorize and replicate training data, raising We also addressed the issue of memorization in diffusion models, where models tend to replicate exact training samples raising copyright infringement and privacy issues. Efforts within the text-to-image community to address memorization explore causes such as data duplication, replicated captions, or trigger tokens, proposing per-prompt inference-time or training-time mitigation strategies. In this paper, we focus on the feed-forward layers and begin by contrasting neuron activations of a set of memorized and non-memorized prompts. Experiments reveal a surprising finding: many different sets of memorized prompts significantly activate a common subspace in the model, demonstrating, for the first time, that memorization in the diffusion models lies in a special subspace. Subsequently, we introduce a novel post-hoc method for editing pre-trained models, whereby memorization is mitigated through the straightforward pruning of weights in specialized subspaces, avoiding the need to disrupt the training or inference process as seen in prior research. Finally, we demonstrate the robustness of the pruned model against training data extraction attacks, thereby unveiling new avenues for a practical and one-for-all solution to memorization. 5 authors · Jun 1, 2024
- TWeddit : A Dataset of Triggering Stories Predominantly Shared by Women on Reddit Warning: This paper may contain examples and topics that may be disturbing to some readers, especially survivors of miscarriage and sexual violence. People affected by abortion, miscarriage, or sexual violence often share their experiences on social media to express emotions and seek support. On public platforms like Reddit, where users can post long, detailed narratives (up to 40,000 characters), readers may be exposed to distressing content. Although Reddit allows manual trigger warnings, many users omit them due to limited awareness or uncertainty about which categories apply. There is scarcity of datasets on Reddit stories labeled for triggering experiences. We propose a curated Reddit dataset, TWeddit, covering triggering experiences related to issues majorly faced by women. Our linguistic analyses show that annotated stories in TWeddit express distinct topics and moral foundations, making the dataset useful for a wide range of future research. 3 authors · Jan 16 1
- Explaining How Visual, Textual and Multimodal Encoders Share Concepts Sparse autoencoders (SAEs) have emerged as a powerful technique for extracting human-interpretable features from neural networks activations. Previous works compared different models based on SAE-derived features but those comparisons have been restricted to models within the same modality. We propose a novel indicator allowing quantitative comparison of models across SAE features, and use it to conduct a comparative study of visual, textual and multimodal encoders. We also propose to quantify the Comparative Sharedness of individual features between different classes of models. With these two new tools, we conduct several studies on 21 encoders of the three types, with two significantly different sizes, and considering generalist and domain specific datasets. The results allow to revisit previous studies at the light of encoders trained in a multimodal context and to quantify to which extent all these models share some representations or features. They also suggest that visual features that are specific to VLMs among vision encoders are shared with text encoders, highlighting the impact of text pretraining. The code is available at https://github.com/CEA-LIST/SAEshareConcepts 3 authors · Jul 24, 2025
- Research on the Impact of Executive Shareholding on New Investment in Enterprises Based on Multivariable Linear Regression Model Based on principal-agent theory and optimal contract theory, companies use the method of increasing executives' shareholding to stimulate collaborative innovation. However, from the aspect of agency costs between management and shareholders (i.e. the first type) and between major shareholders and minority shareholders (i.e. the second type), the interests of management, shareholders and creditors will be unbalanced with the change of the marginal utility of executive equity incentives.In order to establish the correlation between the proportion of shares held by executives and investments in corporate innovation, we have chosen a range of publicly listed companies within China's A-share market as the focus of our study. Employing a multi-variable linear regression model, we aim to analyze this relationship thoroughly.The following models were developed: (1) the impact model of executive shareholding on corporate innovation investment; (2) the impact model of executive shareholding on two types of agency costs; (3)The model is employed to examine the mediating influence of the two categories of agency costs. Following both correlation and regression analyses, the findings confirm a meaningful and positive correlation between executives' shareholding and the augmentation of corporate innovation investments. Additionally, the results indicate that executive shareholding contributes to the reduction of the first type of agency cost, thereby fostering corporate innovation investment. However, simultaneously, it leads to an escalation in the second type of agency cost, thus impeding corporate innovation investment. 10 authors · Sep 19, 2023
- Visual Search Asymmetry: Deep Nets and Humans Share Similar Inherent Biases Visual search is a ubiquitous and often challenging daily task, exemplified by looking for the car keys at home or a friend in a crowd. An intriguing property of some classical search tasks is an asymmetry such that finding a target A among distractors B can be easier than finding B among A. To elucidate the mechanisms responsible for asymmetry in visual search, we propose a computational model that takes a target and a search image as inputs and produces a sequence of eye movements until the target is found. The model integrates eccentricity-dependent visual recognition with target-dependent top-down cues. We compared the model against human behavior in six paradigmatic search tasks that show asymmetry in humans. Without prior exposure to the stimuli or task-specific training, the model provides a plausible mechanism for search asymmetry. We hypothesized that the polarity of search asymmetry arises from experience with the natural environment. We tested this hypothesis by training the model on augmented versions of ImageNet where the biases of natural images were either removed or reversed. The polarity of search asymmetry disappeared or was altered depending on the training protocol. This study highlights how classical perceptual properties can emerge in neural network models, without the need for task-specific training, but rather as a consequence of the statistical properties of the developmental diet fed to the model. All source code and data are publicly available at https://github.com/kreimanlab/VisualSearchAsymmetry. 5 authors · Jun 5, 2021
- Let's Agree to Agree: Neural Networks Share Classification Order on Real Datasets We report a series of robust empirical observations, demonstrating that deep Neural Networks learn the examples in both the training and test sets in a similar order. This phenomenon is observed in all the commonly used benchmarks we evaluated, including many image classification benchmarks, and one text classification benchmark. While this phenomenon is strongest for models of the same architecture, it also crosses architectural boundaries -- models of different architectures start by learning the same examples, after which the more powerful model may continue to learn additional examples. We further show that this pattern of results reflects the interplay between the way neural networks learn benchmark datasets. Thus, when fixing the architecture, we show synthetic datasets where this pattern ceases to exist. When fixing the dataset, we show that other learning paradigms may learn the data in a different order. We hypothesize that our results reflect how neural networks discover structure in natural datasets. 3 authors · May 26, 2019
2 Unbabel's Participation in the WMT20 Metrics Shared Task We present the contribution of the Unbabel team to the WMT 2020 Shared Task on Metrics. We intend to participate on the segment-level, document-level and system-level tracks on all language pairs, as well as the 'QE as a Metric' track. Accordingly, we illustrate results of our models in these tracks with reference to test sets from the previous year. Our submissions build upon the recently proposed COMET framework: We train several estimator models to regress on different human-generated quality scores and a novel ranking model trained on relative ranks obtained from Direct Assessments. We also propose a simple technique for converting segment-level predictions into a document-level score. Overall, our systems achieve strong results for all language pairs on previous test sets and in many cases set a new state-of-the-art. 4 authors · Oct 29, 2020
1 Learning to Emphasize: Dataset and Shared Task Models for Selecting Emphasis in Presentation Slides Presentation slides have become a common addition to the teaching material. Emphasizing strong leading words in presentation slides can allow the audience to direct the eye to certain focal points instead of reading the entire slide, retaining the attention to the speaker during the presentation. Despite a large volume of studies on automatic slide generation, few studies have addressed the automation of design assistance during the creation process. Motivated by this demand, we study the problem of Emphasis Selection (ES) in presentation slides, i.e., choosing candidates for emphasis, by introducing a new dataset containing presentation slides with a wide variety of topics, each is annotated with emphasis words in a crowdsourced setting. We evaluate a range of state-of-the-art models on this novel dataset by organizing a shared task and inviting multiple researchers to model emphasis in this new domain. We present the main findings and compare the results of these models, and by examining the challenges of the dataset, we provide different analysis components. 8 authors · Jan 2, 2021
- "No, to the Right" -- Online Language Corrections for Robotic Manipulation via Shared Autonomy Systems for language-guided human-robot interaction must satisfy two key desiderata for broad adoption: adaptivity and learning efficiency. Unfortunately, existing instruction-following agents cannot adapt, lacking the ability to incorporate online natural language supervision, and even if they could, require hundreds of demonstrations to learn even simple policies. In this work, we address these problems by presenting Language-Informed Latent Actions with Corrections (LILAC), a framework for incorporating and adapting to natural language corrections - "to the right," or "no, towards the book" - online, during execution. We explore rich manipulation domains within a shared autonomy paradigm. Instead of discrete turn-taking between a human and robot, LILAC splits agency between the human and robot: language is an input to a learned model that produces a meaningful, low-dimensional control space that the human can use to guide the robot. Each real-time correction refines the human's control space, enabling precise, extended behaviors - with the added benefit of requiring only a handful of demonstrations to learn. We evaluate our approach via a user study where users work with a Franka Emika Panda manipulator to complete complex manipulation tasks. Compared to existing learned baselines covering both open-loop instruction following and single-turn shared autonomy, we show that our corrections-aware approach obtains higher task completion rates, and is subjectively preferred by users because of its reliability, precision, and ease of use. 6 authors · Jan 6, 2023