Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeBag of Tricks for Training Data Extraction from Language Models
With the advance of language models, privacy protection is receiving more attention. Training data extraction is therefore of great importance, as it can serve as a potential tool to assess privacy leakage. However, due to the difficulty of this task, most of the existing methods are proof-of-concept and still not effective enough. In this paper, we investigate and benchmark tricks for improving training data extraction using a publicly available dataset. Because most existing extraction methods use a pipeline of generating-then-ranking, i.e., generating text candidates as potential training data and then ranking them based on specific criteria, our research focuses on the tricks for both text generation (e.g., sampling strategy) and text ranking (e.g., token-level criteria). The experimental results show that several previously overlooked tricks can be crucial to the success of training data extraction. Based on the GPT-Neo 1.3B evaluation results, our proposed tricks outperform the baseline by a large margin in most cases, providing a much stronger baseline for future research.
Ethicist: Targeted Training Data Extraction Through Loss Smoothed Soft Prompting and Calibrated Confidence Estimation
Large pre-trained language models achieve impressive results across many tasks. However, recent works point out that pre-trained language models may memorize a considerable fraction of their training data, leading to the privacy risk of information leakage. In this paper, we propose a method named Ethicist for targeted training data extraction through loss smoothed soft prompting and calibrated confidence estimation, investigating how to recover the suffix in the training data when given a prefix. To elicit memorization in the attacked model, we tune soft prompt embeddings while keeping the model fixed. We further propose a smoothing loss that smooths the loss distribution of the suffix tokens to make it easier to sample the correct suffix. In order to select the most probable suffix from a collection of sampled suffixes and estimate the prediction confidence, we propose a calibrated confidence estimation method, which normalizes the confidence of the generated suffixes with a local estimation. We show that Ethicist significantly improves the extraction performance on a recently proposed public benchmark. We also investigate several factors influencing the data extraction performance, including decoding strategy, model scale, prefix length, and suffix length. Our code is available at https://github.com/thu-coai/Targeted-Data-Extraction.
Targeted Attack on GPT-Neo for the SATML Language Model Data Extraction Challenge
Previous work has shown that Large Language Models are susceptible to so-called data extraction attacks. This allows an attacker to extract a sample that was contained in the training data, which has massive privacy implications. The construction of data extraction attacks is challenging, current attacks are quite inefficient, and there exists a significant gap in the extraction capabilities of untargeted attacks and memorization. Thus, targeted attacks are proposed, which identify if a given sample from the training data, is extractable from a model. In this work, we apply a targeted data extraction attack to the SATML2023 Language Model Training Data Extraction Challenge. We apply a two-step approach. In the first step, we maximise the recall of the model and are able to extract the suffix for 69% of the samples. In the second step, we use a classifier-based Membership Inference Attack on the generations. Our AutoSklearn classifier achieves a precision of 0.841. The full approach reaches a score of 0.405 recall at a 10% false positive rate, which is an improvement of 34% over the baseline of 0.301.
A general-purpose material property data extraction pipeline from large polymer corpora using Natural Language Processing
The ever-increasing number of materials science articles makes it hard to infer chemistry-structure-property relations from published literature. We used natural language processing (NLP) methods to automatically extract material property data from the abstracts of polymer literature. As a component of our pipeline, we trained MaterialsBERT, a language model, using 2.4 million materials science abstracts, which outperforms other baseline models in three out of five named entity recognition datasets when used as the encoder for text. Using this pipeline, we obtained ~300,000 material property records from ~130,000 abstracts in 60 hours. The extracted data was analyzed for a diverse range of applications such as fuel cells, supercapacitors, and polymer solar cells to recover non-trivial insights. The data extracted through our pipeline is made available through a web platform at https://polymerscholar.org which can be used to locate material property data recorded in abstracts conveniently. This work demonstrates the feasibility of an automatic pipeline that starts from published literature and ends with a complete set of extracted material property information.
Landmarks and Regions: A Robust Approach to Data Extraction
We propose a new approach to extracting data items or field values from semi-structured documents. Examples of such problems include extracting passenger name, departure time and departure airport from a travel itinerary, or extracting price of an item from a purchase receipt. Traditional approaches to data extraction use machine learning or program synthesis to process the whole document to extract the desired fields. Such approaches are not robust to format changes in the document, and the extraction process typically fails even if changes are made to parts of the document that are unrelated to the desired fields of interest. We propose a new approach to data extraction based on the concepts of landmarks and regions. Humans routinely use landmarks in manual processing of documents to zoom in and focus their attention on small regions of interest in the document. Inspired by this human intuition, we use the notion of landmarks in program synthesis to automatically synthesize extraction programs that first extract a small region of interest, and then automatically extract the desired value from the region in a subsequent step. We have implemented our landmark-based extraction approach in a tool LRSyn, and show extensive evaluation on documents in HTML as well as scanned images of invoices and receipts. Our results show that our approach is robust to various types of format changes that routinely happen in real-world settings.
Deep Structured Feature Networks for Table Detection and Tabular Data Extraction from Scanned Financial Document Images
Automatic table detection in PDF documents has achieved a great success but tabular data extraction are still challenging due to the integrity and noise issues in detected table areas. The accurate data extraction is extremely crucial in finance area. Inspired by this, the aim of this research is proposing an automated table detection and tabular data extraction from financial PDF documents. We proposed a method that consists of three main processes, which are detecting table areas with a Faster R-CNN (Region-based Convolutional Neural Network) model with Feature Pyramid Network (FPN) on each page image, extracting contents and structures by a compounded layout segmentation technique based on optical character recognition (OCR) and formulating regular expression rules for table header separation. The tabular data extraction feature is embedded with rule-based filtering and restructuring functions that are highly scalable. We annotate a new Financial Documents dataset with table regions for the experiment. The excellent table detection performance of the detection model is obtained from our customized dataset. The main contributions of this paper are proposing the Financial Documents dataset with table-area annotations, the superior detection model and the rule-based layout segmentation technique for the tabular data extraction from PDF files.
SCRIBES: Web-Scale Script-Based Semi-Structured Data Extraction with Reinforcement Learning
Semi-structured content in HTML tables, lists, and infoboxes accounts for a substantial share of factual data on the web, yet the formatting complicates usage, and reliably extracting structured information from them remains challenging. Existing methods either lack generalization or are resource-intensive due to per-page LLM inference. In this paper, we introduce SCRIBES (SCRIpt-Based Semi-Structured Content Extraction at Web-Scale), a novel reinforcement learning framework that leverages layout similarity across webpages within the same site as a reward signal. Instead of processing each page individually, SCRIBES generates reusable extraction scripts that can be applied to groups of structurally similar webpages. Our approach further improves by iteratively training on synthetic annotations from in-the-wild CommonCrawl data. Experiments show that our approach outperforms strong baselines by over 13% in script quality and boosts downstream question answering accuracy by more than 4% for GPT-4o, enabling scalable and resource-efficient web information extraction.
zERExtractor:An Automated Platform for Enzyme-Catalyzed Reaction Data Extraction from Scientific Literature
The rapid expansion of enzyme kinetics literature has outpaced the curation capabilities of major biochemical databases, creating a substantial barrier to AI-driven modeling and knowledge discovery. We present zERExtractor, an automated and extensible platform for comprehensive extraction of enzyme-catalyzed reaction and activity data from scientific literature. zERExtractor features a unified, modular architecture that supports plug-and-play integration of state-of-the-art models, including large language models (LLMs), as interchangeable components, enabling continuous system evolution alongside advances in AI. Our pipeline combines domain-adapted deep learning, advanced OCR, semantic entity recognition, and prompt-driven LLM modules, together with human expert corrections, to extract kinetic parameters (e.g., kcat, Km), enzyme sequences, substrate SMILES, experimental conditions, and molecular diagrams from heterogeneous document formats. Through active learning strategies integrating AI-assisted annotation, expert validation, and iterative refinement, the system adapts rapidly to new data sources. We also release a large benchmark dataset comprising over 1,000 annotated tables and 5,000 biological fields from 270 P450-related enzymology publications. Benchmarking demonstrates that zERExtractor consistently outperforms existing baselines in table recognition (Acc 89.9%), molecular image interpretation (up to 99.1%), and relation extraction (accuracy 94.2%). zERExtractor bridges the longstanding data gap in enzyme kinetics with a flexible, plugin-ready framework and high-fidelity extraction, laying the groundwork for future AI-powered enzyme modeling and biochemical knowledge discovery.
Semi-automatic staging area for high-quality structured data extraction from scientific literature
We propose a semi-automatic staging area for efficiently building an accurate database of experimental physical properties of superconductors from literature, called SuperCon2, to enrich the existing manually-built superconductor database SuperCon. Here we report our curation interface (SuperCon2 Interface) and a workflow managing the state transitions of each examined record, to validate the dataset of superconductors from PDF documents collected using Grobid-superconductors in a previous work. This curation workflow allows both automatic and manual operations, the former contains ``anomaly detection'' that scans new data identifying outliers, and a ``training data collector'' mechanism that collects training data examples based on manual corrections. Such training data collection policy is effective in improving the machine-learning models with a reduced number of examples. For manual operations, the interface (SuperCon2 interface) is developed to increase efficiency during manual correction by providing a smart interface and an enhanced PDF document viewer. We show that our interface significantly improves the curation quality by boosting precision and recall as compared with the traditional ``manual correction''. Our semi-automatic approach would provide a solution for achieving a reliable database with text-data mining of scientific documents.
TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from Scanned Document Images
With the widespread use of mobile phones and scanners to photograph and upload documents, the need for extracting the information trapped in unstructured document images such as retail receipts, insurance claim forms and financial invoices is becoming more acute. A major hurdle to this objective is that these images often contain information in the form of tables and extracting data from tabular sub-images presents a unique set of challenges. This includes accurate detection of the tabular region within an image, and subsequently detecting and extracting information from the rows and columns of the detected table. While some progress has been made in table detection, extracting the table contents is still a challenge since this involves more fine grained table structure(rows & columns) recognition. Prior approaches have attempted to solve the table detection and structure recognition problems independently using two separate models. In this paper, we propose TableNet: a novel end-to-end deep learning model for both table detection and structure recognition. The model exploits the interdependence between the twin tasks of table detection and table structure recognition to segment out the table and column regions. This is followed by semantic rule-based row extraction from the identified tabular sub-regions. The proposed model and extraction approach was evaluated on the publicly available ICDAR 2013 and Marmot Table datasets obtaining state of the art results. Additionally, we demonstrate that feeding additional semantic features further improves model performance and that the model exhibits transfer learning across datasets. Another contribution of this paper is to provide additional table structure annotations for the Marmot data, which currently only has annotations for table detection.
ComProScanner: A multi-agent based framework for composition-property structured data extraction from scientific literature
Since the advent of various pre-trained large language models, extracting structured knowledge from scientific text has experienced a revolutionary change compared with traditional machine learning or natural language processing techniques. Despite these advances, accessible automated tools that allow users to construct, validate, and visualise datasets from scientific literature extraction remain scarce. We therefore developed ComProScanner, an autonomous multi-agent platform that facilitates the extraction, validation, classification, and visualisation of machine-readable chemical compositions and properties, integrated with synthesis data from journal articles for comprehensive database creation. We evaluated our framework using 100 journal articles against 10 different LLMs, including both open-source and proprietary models, to extract highly complex compositions associated with ceramic piezoelectric materials and corresponding piezoelectric strain coefficients (d33), motivated by the lack of a large dataset for such materials. DeepSeek-V3-0324 outperformed all models with a significant overall accuracy of 0.82. This framework provides a simple, user-friendly, readily-usable package for extracting highly complex experimental data buried in the literature to build machine learning or deep learning datasets.
Flexible, Model-Agnostic Method for Materials Data Extraction from Text Using General Purpose Language Models
Accurate and comprehensive material databases extracted from research papers are critical for materials science and engineering but require significant human effort to develop. In this paper we present a simple method of extracting materials data from full texts of research papers suitable for quickly developing modest-sized databases. The method requires minimal to no coding, prior knowledge about the extracted property, or model training, and provides high recall and almost perfect precision in the resultant database. The method is fully automated except for one human-assisted step, which typically requires just a few hours of human labor. The method builds on top of natural language processing and large general language models but can work with almost any such model. The language models GPT-3/3.5, bart and DeBERTaV3 are evaluated here for comparison. We provide a detailed detailed analysis of the methods performance in extracting bulk modulus data, obtaining up to 90% precision at 96% recall, depending on the amount of human effort involved. We then demonstrate the methods broader effectiveness by developing a database of critical cooling rates for metallic glasses.
Pantograph: A Machine-to-Machine Interaction Interface for Advanced Theorem Proving, High Level Reasoning, and Data Extraction in Lean 4
Machine-assisted theorem proving refers to the process of conducting structured reasoning to automatically generate proofs for mathematical theorems. Recently, there has been a surge of interest in using machine learning models in conjunction with proof assistants to perform this task. In this paper, we introduce Pantograph, a tool that provides a versatile interface to the Lean 4 proof assistant and enables efficient proof search via powerful search algorithms such as Monte Carlo Tree Search. In addition, Pantograph enables high-level reasoning by enabling a more robust handling of Lean 4's inference steps. We provide an overview of Pantograph's architecture and features. We also report on an illustrative use case: using machine learning models and proof sketches to prove Lean 4 theorems. Pantograph's innovative features pave the way for more advanced machine learning models to perform complex proof searches and high-level reasoning, equipping future researchers to design more versatile and powerful theorem provers.
Extracting Accurate Materials Data from Research Papers with Conversational Language Models and Prompt Engineering
There has been a growing effort to replace hand extraction of data from research papers with automated data extraction based on natural language processing, language models, and recently, large language models (LLMs). Although these methods enable efficient extraction of data from large sets of research papers, they require a significant amount of up-front effort, expertise, and coding. In this work we propose the ChatExtract method that can fully automate very accurate data extraction with minimal initial effort and background, using an advanced conversational LLM. ChatExtract consists of a set of engineered prompts applied to a conversational LLM that both identify sentences with data, extract that data, and assure the data's correctness through a series of follow-up questions. These follow-up questions largely overcome known issues with LLMs providing factually inaccurate responses. ChatExtract can be applied with any conversational LLMs and yields very high quality data extraction. In tests on materials data we find precision and recall both close to 90% from the best conversational LLMs, like ChatGPT-4. We demonstrate that the exceptional performance is enabled by the information retention in a conversational model combined with purposeful redundancy and introducing uncertainty through follow-up prompts. These results suggest that approaches similar to ChatExtract, due to their simplicity, transferability, and accuracy are likely to become powerful tools for data extraction in the near future. Finally, databases for critical cooling rates of metallic glasses and yield strengths of high entropy alloys are developed using ChatExtract.
AutoPK: Leveraging LLMs and a Hybrid Similarity Metric for Advanced Retrieval of Pharmacokinetic Data from Complex Tables and Documents
Pharmacokinetics (PK) plays a critical role in drug development and regulatory decision-making for human and veterinary medicine, directly affecting public health through drug safety and efficacy assessments. However, PK data are often embedded in complex, heterogeneous tables with variable structures and inconsistent terminologies, posing significant challenges for automated PK data retrieval and standardization. AutoPK, a novel two-stage framework for accurate and scalable extraction of PK data from complex scientific tables. In the first stage, AutoPK identifies and extracts PK parameter variants using large language models (LLMs), a hybrid similarity metric, and LLM-based validation. The second stage filters relevant rows, converts the table into a key-value text format, and uses an LLM to reconstruct a standardized table. Evaluated on a real-world dataset of 605 PK tables, including captions and footnotes, AutoPK shows significant improvements in precision and recall over direct LLM baselines. For instance, AutoPK with LLaMA 3.1-70B achieved an F1-score of 0.92 on half-life and 0.91 on clearance parameters, outperforming direct use of LLaMA 3.1-70B by margins of 0.10 and 0.21, respectively. Smaller models such as Gemma 3-27B and Phi 3-12B with AutoPK achieved 2-7 fold F1 gains over their direct use, with Gemma's hallucination rates reduced from 60-95% down to 8-14%. Notably, AutoPK enabled open-source models like Gemma 3-27B to outperform commercial systems such as GPT-4o Mini on several PK parameters. AutoPK enables scalable and high-confidence PK data extraction, making it well-suited for critical applications in veterinary pharmacology, drug safety monitoring, and public health decision-making, while addressing heterogeneous table structures and terminology and demonstrating generalizability across key PK parameters. Code and data: https://github.com/hosseinsholehrasa/AutoPK
KramaBench: A Benchmark for AI Systems on Data-to-Insight Pipelines over Data Lakes
Constructing real-world data-to-insight pipelines often involves data extraction from data lakes, data integration across heterogeneous data sources, and diverse operations from data cleaning to analysis. The design and implementation of data science pipelines require domain knowledge, technical expertise, and even project-specific insights. AI systems have shown remarkable reasoning, coding, and understanding capabilities. However, it remains unclear to what extent these capabilities translate into successful design and execution of such complex pipelines. We introduce KRAMABENCH: a benchmark composed of 104 manually-curated real-world data science pipelines spanning 1700 data files from 24 data sources in 6 different domains. We show that these pipelines test the end-to-end capabilities of AI systems on data processing, requiring data discovery, wrangling and cleaning, efficient processing, statistical reasoning, and orchestrating data processing steps given a high-level task. Our evaluation tests 5 general models and 3 code generation models using our reference framework, DS-GURU, which instructs the AI model to decompose a question into a sequence of subtasks, reason through each step, and synthesize Python code that implements the proposed design. Our results on KRAMABENCH show that, although the models are sufficiently capable of solving well-specified data science code generation tasks, when extensive data processing and domain knowledge are required to construct real-world data science pipelines, existing out-of-box models fall short. Progress on KramaBench represents crucial steps towards developing autonomous data science agents for real-world applications. Our code, reference framework, and data are available at https://github.com/mitdbg/KramaBench.
SciDaSynth: Interactive Structured Knowledge Extraction and Synthesis from Scientific Literature with Large Language Model
Extraction and synthesis of structured knowledge from extensive scientific literature are crucial for advancing and disseminating scientific progress. Although many existing systems facilitate literature review and digest, they struggle to process multimodal, varied, and inconsistent information within and across the literature into structured data. We introduce SciDaSynth, a novel interactive system powered by large language models (LLMs) that enables researchers to efficiently build structured knowledge bases from scientific literature at scale. The system automatically creates data tables to organize and summarize users' interested knowledge in literature via question-answering. Furthermore, it provides multi-level and multi-faceted exploration of the generated data tables, facilitating iterative validation, correction, and refinement. Our within-subjects study with researchers demonstrates the effectiveness and efficiency of SciDaSynth in constructing quality scientific knowledge bases. We further discuss the design implications for human-AI interaction tools for data extraction and structuring.
From Accidents to Insights: Leveraging Multimodal Data for Scenario-Driven ADS Testing
The rapid advancements in Autonomous Driving Systems (ADS) have necessitated robust software testing to ensure safety and reliability. However, automating the generation of scalable and concrete test scenarios remains a significant challenge. Current scenario-based test case generation methods often face limitations, such as unrealistic scenes and inaccurate vehicle trajectories. These challenges largely result from the loss of map information during data extraction and the lack of an effective verification mechanism to mitigate hallucinations in large language models (LLMs). This paper introduces TRACE, a scenario-based ADS Test case Generation framework for Critical Scenarios. By leveraging multimodal data to extract challenging scenarios from real-world car crash reports, TRACE constructs numerous critical test cases with less data, significantly enhancing ADS bug detection efficiency. Using in-context learning, chain-of-thought prompting, and self-validation approaches, we use LLMs to extract environmental and road network information from crash reports. For vehicle trajectory planning, data containing map information and vehicle coordinates serves as a knowledge base to build a ChatGPT-based LLM with path-planning capabilities, which we named TrackMate. Based on 50 existing crash reports, our approach successfully tested three ADS models across two simulation platforms, MetaDrive and BeamNG. Of the 290 constructed test scenarios, 127 are identified as critical, as they resulted in vehicle collisions. Additionally, user feedback reveals that TRACE demonstrates superior scenario reconstruction accuracy, with 77.5% of the scenarios being rated as 'mostly or 'totally' consistent, compared to only 27% for the most related SOTA, LCTGen.
Extracting alignment data in open models
In this work, we show that it is possible to extract significant amounts of alignment training data from a post-trained model -- useful to steer the model to improve certain capabilities such as long-context reasoning, safety, instruction following, and maths. While the majority of related work on memorisation has focused on measuring success of training data extraction through string matching, we argue that embedding models are better suited for our specific goals. Distances measured through a high quality embedding model can identify semantic similarities between strings that a different metric such as edit distance will struggle to capture. In fact, in our investigation, approximate string matching would have severely undercounted (by a conservative estimate of 10times) the amount of data that can be extracted due to trivial artifacts that deflate the metric. Interestingly, we find that models readily regurgitate training data that was used in post-training phases such as SFT or RL. We show that this data can be then used to train a base model, recovering a meaningful amount of the original performance. We believe our work exposes a possibly overlooked risk towards extracting alignment data. Finally, our work opens up an interesting discussion on the downstream effects of distillation practices: since models seem to be regurgitating aspects of their training set, distillation can therefore be thought of as indirectly training on the model's original dataset.
RoundTripOCR: A Data Generation Technique for Enhancing Post-OCR Error Correction in Low-Resource Devanagari Languages
Optical Character Recognition (OCR) technology has revolutionized the digitization of printed text, enabling efficient data extraction and analysis across various domains. Just like Machine Translation systems, OCR systems are prone to errors. In this work, we address the challenge of data generation and post-OCR error correction, specifically for low-resource languages. We propose an approach for synthetic data generation for Devanagari languages, RoundTripOCR, that tackles the scarcity of the post-OCR Error Correction datasets for low-resource languages. We release post-OCR text correction datasets for Hindi, Marathi, Bodo, Nepali, Konkani and Sanskrit. We also present a novel approach for OCR error correction by leveraging techniques from machine translation. Our method involves translating erroneous OCR output into a corrected form by treating the OCR errors as mistranslations in a parallel text corpus, employing pre-trained transformer models to learn the mapping from erroneous to correct text pairs, effectively correcting OCR errors.
Extracting Training Data from Large Language Models
It has become common to publish large (billion parameter) language models that have been trained on private datasets. This paper demonstrates that in such settings, an adversary can perform a training data extraction attack to recover individual training examples by querying the language model. We demonstrate our attack on GPT-2, a language model trained on scrapes of the public Internet, and are able to extract hundreds of verbatim text sequences from the model's training data. These extracted examples include (public) personally identifiable information (names, phone numbers, and email addresses), IRC conversations, code, and 128-bit UUIDs. Our attack is possible even though each of the above sequences are included in just one document in the training data. We comprehensively evaluate our extraction attack to understand the factors that contribute to its success. Worryingly, we find that larger models are more vulnerable than smaller models. We conclude by drawing lessons and discussing possible safeguards for training large language models.
Be Careful When Fine-tuning On Open-Source LLMs: Your Fine-tuning Data Could Be Secretly Stolen!
Fine-tuning on open-source Large Language Models (LLMs) with proprietary data is now a standard practice for downstream developers to obtain task-specific LLMs. Surprisingly, we reveal a new and concerning risk along with the practice: the creator of the open-source LLMs can later extract the private downstream fine-tuning data through simple backdoor training, only requiring black-box access to the fine-tuned downstream model. Our comprehensive experiments, across 4 popularly used open-source models with 3B to 32B parameters and 2 downstream datasets, suggest that the extraction performance can be strikingly high: in practical settings, as much as 76.3% downstream fine-tuning data (queries) out of a total 5,000 samples can be perfectly extracted, and the success rate can increase to 94.9% in more ideal settings. We also explore a detection-based defense strategy but find it can be bypassed with improved attack. Overall, we highlight the emergency of this newly identified data breaching risk in fine-tuning, and we hope that more follow-up research could push the progress of addressing this concerning risk. The code and data used in our experiments are released at https://github.com/thu-coai/Backdoor-Data-Extraction.
GLiNER2: An Efficient Multi-Task Information Extraction System with Schema-Driven Interface
Information extraction (IE) is fundamental to numerous NLP applications, yet existing solutions often require specialized models for different tasks or rely on computationally expensive large language models. We present GLiNER2, a unified framework that enhances the original GLiNER architecture to support named entity recognition, text classification, and hierarchical structured data extraction within a single efficient model. Built pretrained transformer encoder architecture, GLiNER2 maintains CPU efficiency and compact size while introducing multi-task composition through an intuitive schema-based interface. Our experiments demonstrate competitive performance across extraction and classification tasks with substantial improvements in deployment accessibility compared to LLM-based alternatives. We release GLiNER2 as an open-source pip-installable library with pre-trained models and documentation at https://github.com/fastino-ai/GLiNER2.
Matrix: Peer-to-Peer Multi-Agent Synthetic Data Generation Framework
Synthetic data has become increasingly important for training large language models, especially when real data is scarce, expensive, or privacy-sensitive. Many such generation tasks require coordinated multi-agent workflows, where specialized agents collaborate to produce data that is higher quality, more diverse, and structurally richer. However, existing frameworks for multi-agent synthesis often depend on a centralized orchestrator, creating scalability bottlenecks, or are hardcoded for specific domains, limiting flexibility. We present Matrix, a decentralized framework that represents both control and data flow as serialized messages passed through distributed queues. This peer-to-peer design eliminates the central orchestrator. Each task progresses independently through lightweight agents, while compute-intensive operations, such as LLM inference or containerized environments, are handled by distributed services. Built on Ray, Matrix scales to tens of thousands of concurrent agentic workflows and provides a modular, configurable design that enables easy adaptation to a wide range of data generation workflows. We evaluate Matrix across diverse synthesis scenarios, such as multi-agent collaborative dialogue, web-based reasoning data extraction, and tool-use trajectory generation in customer service environments. In all cases, Matrix achieves 2--15times higher data generation throughput under identical hardware resources, without compromising output quality.
ByteScience: Bridging Unstructured Scientific Literature and Structured Data with Auto Fine-tuned Large Language Model in Token Granularity
Natural Language Processing (NLP) is widely used to supply summarization ability from long context to structured information. However, extracting structured knowledge from scientific text by NLP models remains a challenge because of its domain-specific nature to complex data preprocessing and the granularity of multi-layered device-level information. To address this, we introduce ByteScience, a non-profit cloud-based auto fine-tuned Large Language Model (LLM) platform, which is designed to extract structured scientific data and synthesize new scientific knowledge from vast scientific corpora. The platform capitalizes on DARWIN, an open-source, fine-tuned LLM dedicated to natural science. The platform was built on Amazon Web Services (AWS) and provides an automated, user-friendly workflow for custom model development and data extraction. The platform achieves remarkable accuracy with only a small amount of well-annotated articles. This innovative tool streamlines the transition from the science literature to structured knowledge and data and benefits the advancements in natural informatics.
Tab-MIA: A Benchmark Dataset for Membership Inference Attacks on Tabular Data in LLMs
Large language models (LLMs) are increasingly trained on tabular data, which, unlike unstructured text, often contains personally identifiable information (PII) in a highly structured and explicit format. As a result, privacy risks arise, since sensitive records can be inadvertently retained by the model and exposed through data extraction or membership inference attacks (MIAs). While existing MIA methods primarily target textual content, their efficacy and threat implications may differ when applied to structured data, due to its limited content, diverse data types, unique value distributions, and column-level semantics. In this paper, we present Tab-MIA, a benchmark dataset for evaluating MIAs on tabular data in LLMs and demonstrate how it can be used. Tab-MIA comprises five data collections, each represented in six different encoding formats. Using our Tab-MIA benchmark, we conduct the first evaluation of state-of-the-art MIA methods on LLMs finetuned with tabular data across multiple encoding formats. In the evaluation, we analyze the memorization behavior of pretrained LLMs on structured data derived from Wikipedia tables. Our findings show that LLMs memorize tabular data in ways that vary across encoding formats, making them susceptible to extraction via MIAs. Even when fine-tuned for as few as three epochs, models exhibit high vulnerability, with AUROC scores approaching 90% in most cases. Tab-MIA enables systematic evaluation of these risks and provides a foundation for developing privacy-preserving methods for tabular data in LLMs.
A foundation model for human-AI collaboration in medical literature mining
Systematic literature review is essential for evidence-based medicine, requiring comprehensive analysis of clinical trial publications. However, the application of artificial intelligence (AI) models for medical literature mining has been limited by insufficient training and evaluation across broad therapeutic areas and diverse tasks. Here, we present LEADS, an AI foundation model for study search, screening, and data extraction from medical literature. The model is trained on 633,759 instruction data points in LEADSInstruct, curated from 21,335 systematic reviews, 453,625 clinical trial publications, and 27,015 clinical trial registries. We showed that LEADS demonstrates consistent improvements over four cutting-edge generic large language models (LLMs) on six tasks. Furthermore, LEADS enhances expert workflows by providing supportive references following expert requests, streamlining processes while maintaining high-quality results. A study with 16 clinicians and medical researchers from 14 different institutions revealed that experts collaborating with LEADS achieved a recall of 0.81 compared to 0.77 experts working alone in study selection, with a time savings of 22.6%. In data extraction tasks, experts using LEADS achieved an accuracy of 0.85 versus 0.80 without using LEADS, alongside a 26.9% time savings. These findings highlight the potential of specialized medical literature foundation models to outperform generic models, delivering significant quality and efficiency benefits when integrated into expert workflows for medical literature mining.
Accelerating Clinical Evidence Synthesis with Large Language Models
Synthesizing clinical evidence largely relies on systematic reviews of clinical trials and retrospective analyses from medical literature. However, the rapid expansion of publications presents challenges in efficiently identifying, summarizing, and updating clinical evidence. Here, we introduce TrialMind, a generative artificial intelligence (AI) pipeline for facilitating human-AI collaboration in three crucial tasks for evidence synthesis: study search, screening, and data extraction. To assess its performance, we chose published systematic reviews to build the benchmark dataset, named TrialReviewBench, which contains 100 systematic reviews and the associated 2,220 clinical studies. Our results show that TrialMind excels across all three tasks. In study search, it generates diverse and comprehensive search queries to achieve high recall rates (Ours 0.711-0.834 v.s. Human baseline 0.138-0.232). For study screening, TrialMind surpasses traditional embedding-based methods by 30% to 160%. In data extraction, it outperforms a GPT-4 baseline by 29.6% to 61.5%. We further conducted user studies to confirm its practical utility. Compared to manual efforts, human-AI collaboration using TrialMind yielded a 71.4% recall lift and 44.2% time savings in study screening and a 23.5% accuracy lift and 63.4% time savings in data extraction. Additionally, when comparing synthesized clinical evidence presented in forest plots, medical experts favored TrialMind's outputs over GPT-4's outputs in 62.5% to 100% of cases. These findings show the promise of LLM-based approaches like TrialMind to accelerate clinical evidence synthesis via streamlining study search, screening, and data extraction from medical literature, with exceptional performance improvement when working with human experts.
Qwen2.5-VL Technical Report
We introduce Qwen2.5-VL, the latest flagship model of Qwen vision-language series, which demonstrates significant advancements in both foundational capabilities and innovative functionalities. Qwen2.5-VL achieves a major leap forward in understanding and interacting with the world through enhanced visual recognition, precise object localization, robust document parsing, and long-video comprehension. A standout feature of Qwen2.5-VL is its ability to localize objects using bounding boxes or points accurately. It provides robust structured data extraction from invoices, forms, and tables, as well as detailed analysis of charts, diagrams, and layouts. To handle complex inputs, Qwen2.5-VL introduces dynamic resolution processing and absolute time encoding, enabling it to process images of varying sizes and videos of extended durations (up to hours) with second-level event localization. This allows the model to natively perceive spatial scales and temporal dynamics without relying on traditional normalization techniques. By training a native dynamic-resolution Vision Transformer (ViT) from scratch and incorporating Window Attention, we reduce computational overhead while maintaining native resolution. As a result, Qwen2.5-VL excels not only in static image and document understanding but also as an interactive visual agent capable of reasoning, tool usage, and task execution in real-world scenarios such as operating computers and mobile devices. Qwen2.5-VL is available in three sizes, addressing diverse use cases from edge AI to high-performance computing. The flagship Qwen2.5-VL-72B model matches state-of-the-art models like GPT-4o and Claude 3.5 Sonnet, particularly excelling in document and diagram understanding. Additionally, Qwen2.5-VL maintains robust linguistic performance, preserving the core language competencies of the Qwen2.5 LLM.
Towards Robust and Parameter-Efficient Knowledge Unlearning for LLMs
Large Language Models (LLMs) have demonstrated strong reasoning and memorization capabilities via pretraining on massive textual corpora. However, this poses risk of privacy and copyright violations, highlighting the need for efficient machine unlearning methods that remove sensitive data without retraining from scratch. While Gradient Ascent (GA) is commonly used to unlearn by reducing the likelihood of generating unwanted content, it leads to unstable optimization and catastrophic forgetting of retrained knowledge. We find that combining GA with low-rank adaptation results in poor trade-offs between computational cost and generative performance. To address these challenges, we propose Low-rank Knowledge Unlearning (LoKU), a novel framework that enables robust and efficient unlearning for LLMs. First, we introduce Inverted Hinge Loss, which suppresses unwanted tokens while maintaining fluency by boosting the probability of the next most likely token. Second, we develop a data-adaptive initialization for LoRA adapters via low-rank approximation weighted with relative Fisher information, thereby focusing updates on parameters critical for removing targeted knowledge. Experiments on the Training Data Extraction Challenge dataset using GPT-Neo models as well as on the TOFU benchmark with Phi-1.5B and Llama2-7B models demonstrate that our approach effectively removes sensitive information while maintaining reasoning and generative capabilities with minimal impact. Our implementation can be found in https://github.com/csm9493/efficient-llm-unlearning.
Unveiling Document Structures with YOLOv5 Layout Detection
The current digital environment is characterized by the widespread presence of data, particularly unstructured data, which poses many issues in sectors including finance, healthcare, and education. Conventional techniques for data extraction encounter difficulties in dealing with the inherent variety and complexity of unstructured data, hence requiring the adoption of more efficient methodologies. This research investigates the utilization of YOLOv5, a cutting-edge computer vision model, for the purpose of rapidly identifying document layouts and extracting unstructured data. The present study establishes a conceptual framework for delineating the notion of "objects" as they pertain to documents, incorporating various elements such as paragraphs, tables, photos, and other constituent parts. The main objective is to create an autonomous system that can effectively recognize document layouts and extract unstructured data, hence improving the effectiveness of data extraction. In the conducted examination, the YOLOv5 model exhibits notable effectiveness in the task of document layout identification, attaining a high accuracy rate along with a precision value of 0.91, a recall value of 0.971, an F1-score of 0.939, and an area under the receiver operating characteristic curve (AUC-ROC) of 0.975. The remarkable performance of this system optimizes the process of extracting textual and tabular data from document images. Its prospective applications are not limited to document analysis but can encompass unstructured data from diverse sources, such as audio data. This study lays the foundation for future investigations into the wider applicability of YOLOv5 in managing various types of unstructured data, offering potential for novel applications across multiple domains.
Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to generate grounded responses by leveraging external knowledge databases without altering model parameters. Although the absence of weight tuning prevents leakage via model parameters, it introduces the risk of inference adversaries exploiting retrieved documents in the model's context. Existing methods for membership inference and data extraction often rely on jailbreaking or carefully crafted unnatural queries, which can be easily detected or thwarted with query rewriting techniques common in RAG systems. In this work, we present Interrogation Attack (IA), a membership inference technique targeting documents in the RAG datastore. By crafting natural-text queries that are answerable only with the target document's presence, our approach demonstrates successful inference with just 30 queries while remaining stealthy; straightforward detectors identify adversarial prompts from existing methods up to ~76x more frequently than those generated by our attack. We observe a 2x improvement in TPR@1%FPR over prior inference attacks across diverse RAG configurations, all while costing less than $0.02 per document inference.
WanJuanSiLu: A High-Quality Open-Source Webtext Dataset for Low-Resource Languages
This paper introduces the open-source dataset WanJuanSiLu, designed to provide high-quality training corpora for low-resource languages, thereby advancing the research and development of multilingual models. To achieve this, we have developed a systematic data processing framework tailored for low-resource languages. This framework encompasses key stages such as data extraction, corpus cleaning, content deduplication, security filtering, quality evaluation, and theme classification. Through the implementation of this framework, we have significantly improved both the quality and security of the dataset, while maintaining its linguistic diversity. As of now, data for all five languages have been fully open-sourced. The dataset can be accessed at https://opendatalab.com/applyMultilingualCorpus, and GitHub repository is available at https://github.com/opendatalab/WanJuan3.0
Context-Aware Chart Element Detection
As a prerequisite of chart data extraction, the accurate detection of chart basic elements is essential and mandatory. In contrast to object detection in the general image domain, chart element detection relies heavily on context information as charts are highly structured data visualization formats. To address this, we propose a novel method CACHED, which stands for Context-Aware Chart Element Detection, by integrating a local-global context fusion module consisting of visual context enhancement and positional context encoding with the Cascade R-CNN framework. To improve the generalization of our method for broader applicability, we refine the existing chart element categorization and standardized 18 classes for chart basic elements, excluding plot elements. Our CACHED method, with the updated category of chart elements, achieves state-of-the-art performance in our experiments, underscoring the importance of context in chart element detection. Extending our method to the bar plot detection task, we obtain the best result on the PMC test dataset.
Russian Web Tables: A Public Corpus of Web Tables for Russian Language Based on Wikipedia
Corpora that contain tabular data such as WebTables are a vital resource for the academic community. Essentially, they are the backbone of any modern research in information management. They are used for various tasks of data extraction, knowledge base construction, question answering, column semantic type detection and many other. Such corpora are useful not only as a source of data, but also as a base for building test datasets. So far, there were no such corpora for the Russian language and this seriously hindered research in the aforementioned areas. In this paper, we present the first corpus of Web tables created specifically out of Russian language material. It was built via a special toolkit we have developed to crawl the Russian Wikipedia. Both the corpus and the toolkit are open-source and publicly available. Finally, we present a short study that describes Russian Wikipedia tables and their statistics.
Facilitating Proactive and Reactive Guidance for Decision Making on the Web: A Design Probe with WebSeek
Web AI agents such as ChatGPT Agent and GenSpark are increasingly used for routine web-based tasks, yet they still rely on text-based input prompts, lack proactive detection of user intent, and offer no support for interactive data analysis and decision making. We present WebSeek, a mixed-initiative browser extension that enables users to discover and extract information from webpages to then flexibly build, transform, and refine tangible data artifacts-such as tables, lists, and visualizations-all within an interactive canvas. Within this environment, users can perform analysis-including data transformations such as joining tables or creating visualizations-while an in-built AI both proactively offers context-aware guidance and automation, and reactively responds to explicit user requests. An exploratory user study (N=15) with WebSeek as a probe reveals participants' diverse analysis strategies, underscoring their desire for transparency and control during human-AI collaboration.
How BPE Affects Memorization in Transformers
Training data memorization in NLP can both be beneficial (e.g., closed-book QA) and undesirable (personal data extraction). In any case, successful model training requires a non-trivial amount of memorization to store word spellings, various linguistic idiosyncrasies and common knowledge. However, little is known about what affects the memorization behavior of NLP models, as the field tends to focus on the equally important question of generalization. In this work, we demonstrate that the size of the subword vocabulary learned by Byte-Pair Encoding (BPE) greatly affects both ability and tendency of standard Transformer models to memorize training data, even when we control for the number of learned parameters. We find that with a large subword vocabulary size, Transformer models fit random mappings more easily and are more vulnerable to membership inference attacks. Similarly, given a prompt, Transformer-based language models with large subword vocabularies reproduce the training data more often. We conjecture this effect is caused by reduction in the sequences' length that happens as the BPE vocabulary grows. Our findings can allow a more informed choice of hyper-parameters, that is better tailored for a particular use-case.
Auto-BenchmarkCard: Automated Synthesis of Benchmark Documentation
We present Auto-BenchmarkCard, a workflow for generating validated descriptions of AI benchmarks. Benchmark documentation is often incomplete or inconsistent, making it difficult to interpret and compare benchmarks across tasks or domains. Auto-BenchmarkCard addresses this gap by combining multi-agent data extraction from heterogeneous sources (e.g., Hugging Face, Unitxt, academic papers) with LLM-driven synthesis. A validation phase evaluates factual accuracy through atomic entailment scoring using the FactReasoner tool. This workflow has the potential to promote transparency, comparability, and reusability in AI benchmark reporting, enabling researchers and practitioners to better navigate and evaluate benchmark choices.
Seeing the Forest for the Trees: A Large Scale, Continuously Updating Meta-Analysis of Frontier LLMs
The surge of LLM studies makes synthesizing their findings challenging. Meta-analysis can uncover important trends across studies, but its use is limited by the time-consuming nature of manual data extraction. Our study presents a semi-automated approach for meta-analysis that accelerates data extraction using LLMs. It automatically identifies relevant arXiv papers, extracts experimental results and related attributes, and organizes them into a structured dataset. We conduct a comprehensive meta-analysis of frontier LLMs using an automatically extracted dataset, reducing the effort of paper surveying and data extraction by more than 93\% compared to manual approaches. We validate our dataset by showing that it reproduces key findings from a recent manual meta-analysis about Chain-of-Thought (CoT), and also uncovers new insights that go beyond it, showing for example that in-context examples benefit multimodal tasks but offer limited gains in mathematical tasks compared to CoT. Our automatically updatable dataset enables continuous tracking of target models by extracting evaluation studies as new data becomes available. Through our scientific artifacts and empirical analysis, we provide novel insights into LLMs while facilitating ongoing meta-analyses of their behavior.
Leveraging Large Language Models for Web Scraping
Large Language Models (LLMs) demonstrate remarkable capabilities in replicating human tasks and boosting productivity. However, their direct application for data extraction presents limitations due to a prioritisation of fluency over factual accuracy and a restricted ability to manipulate specific information. Therefore to overcome these limitations, this research leverages the knowledge representation power of pre-trained LLMs and the targeted information access enabled by RAG models, this research investigates a general-purpose accurate data scraping recipe for RAG models designed for language generation. To capture knowledge in a more modular and interpretable way, we use pre trained language models with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus. We utilised RAG model architecture and did an in-depth analysis of their capabilities under three tasks: (i) Semantic Classification of HTML elements, (ii) Chunking HTML text for effective understanding, and (iii) comparing results from different LLMs and ranking algorithms. While previous work has developed dedicated architectures and training procedures for HTML understanding and extraction, we show that LLMs pre-trained on standard natural language with an addition of effective chunking, searching and ranking algorithms, can prove to be efficient data scraping tool to extract complex data from unstructured text. Future research directions include addressing the challenges of provenance tracking and dynamic knowledge updates within the proposed RAG-based data extraction framework. By overcoming these limitations, this approach holds the potential to revolutionise data extraction from vast repositories of textual information.
Traces of Memorisation in Large Language Models for Code
Large language models have gained significant popularity because of their ability to generate human-like text and potential applications in various fields, such as Software Engineering. Large language models for code are commonly trained on large unsanitised corpora of source code scraped from the internet. The content of these datasets is memorised and can be extracted by attackers with data extraction attacks. In this work, we explore memorisation in large language models for code and compare the rate of memorisation with large language models trained on natural language. We adopt an existing benchmark for natural language and construct a benchmark for code by identifying samples that are vulnerable to attack. We run both benchmarks against a variety of models, and perform a data extraction attack. We find that large language models for code are vulnerable to data extraction attacks, like their natural language counterparts. From the training data that was identified to be potentially extractable we were able to extract 47% from a CodeGen-Mono-16B code completion model. We also observe that models memorise more, as their parameter count grows, and that their pre-training data are also vulnerable to attack. We also find that data carriers are memorised at a higher rate than regular code or documentation and that different model architectures memorise different samples. Data leakage has severe outcomes, so we urge the research community to further investigate the extent of this phenomenon using a wider range of models and extraction techniques in order to build safeguards to mitigate this issue.
GERNERMED -- An Open German Medical NER Model
The current state of adoption of well-structured electronic health records and integration of digital methods for storing medical patient data in structured formats can often considered as inferior compared to the use of traditional, unstructured text based patient data documentation. Data mining in the field of medical data analysis often needs to rely solely on processing of unstructured data to retrieve relevant data. In natural language processing (NLP), statistical models have been shown successful in various tasks like part-of-speech tagging, relation extraction (RE) and named entity recognition (NER). In this work, we present GERNERMED, the first open, neural NLP model for NER tasks dedicated to detect medical entity types in German text data. Here, we avoid the conflicting goals of protection of sensitive patient data from training data extraction and the publication of the statistical model weights by training our model on a custom dataset that was translated from publicly available datasets in foreign language by a pretrained neural machine translation model. The sample code and the statistical model is available at: https://github.com/frankkramer-lab/GERNERMED
AUITestAgent: Automatic Requirements Oriented GUI Function Testing
The Graphical User Interface (GUI) is how users interact with mobile apps. To ensure it functions properly, testing engineers have to make sure it functions as intended, based on test requirements that are typically written in natural language. While widely adopted manual testing and script-based methods are effective, they demand substantial effort due to the vast number of GUI pages and rapid iterations in modern mobile apps. This paper introduces AUITestAgent, the first automatic, natural language-driven GUI testing tool for mobile apps, capable of fully automating the entire process of GUI interaction and function verification. Since test requirements typically contain interaction commands and verification oracles. AUITestAgent can extract GUI interactions from test requirements via dynamically organized agents. Then, AUITestAgent employs a multi-dimensional data extraction strategy to retrieve data relevant to the test requirements from the interaction trace and perform verification. Experiments on customized benchmarks demonstrate that AUITestAgent outperforms existing tools in the quality of generated GUI interactions and achieved the accuracy of verifications of 94%. Moreover, field deployment in Meituan has shown AUITestAgent's practical usability, with it detecting 4 new functional bugs during 10 regression tests in two months.
Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models
Large Language Models (LLMs) have the unique capability to understand and generate human-like text from input queries. When fine-tuned, these models show enhanced performance on domain-specific queries. OpenAI highlights the process of fine-tuning, stating: "To fine-tune a model, you are required to provide at least 10 examples. We typically see clear improvements from fine-tuning on 50 to 100 training examples, but the right number varies greatly based on the exact use case." This study extends this concept to the integration of LLMs within Retrieval-Augmented Generation (RAG) pipelines, which aim to improve accuracy and relevance by leveraging external corpus data for information retrieval. However, RAG's promise of delivering optimal responses often falls short in complex query scenarios. This study aims to specifically examine the effects of fine-tuning LLMs on their ability to extract and integrate contextual data to enhance the performance of RAG systems across multiple domains. We evaluate the impact of fine-tuning on the LLMs' capacity for data extraction and contextual understanding by comparing the accuracy and completeness of fine-tuned models against baseline performances across datasets from multiple domains. Our findings indicate that fine-tuning resulted in a decline in performance compared to the baseline models, contrary to the improvements observed in standalone LLM applications as suggested by OpenAI. This study highlights the need for vigorous investigation and validation of fine-tuned models for domain-specific tasks.
SC2EGSet: StarCraft II Esport Replay and Game-state Dataset
As a relatively new form of sport, esports offers unparalleled data availability. Despite the vast amounts of data that are generated by game engines, it can be challenging to extract them and verify their integrity for the purposes of practical and scientific use. Our work aims to open esports to a broader scientific community by supplying raw and pre-processed files from StarCraft II esports tournaments. These files can be used in statistical and machine learning modeling tasks and related to various laboratory-based measurements (e.g., behavioral tests, brain imaging). We have gathered publicly available game-engine generated "replays" of tournament matches and performed data extraction and cleanup using a low-level application programming interface (API) parser library. Additionally, we open-sourced and published all the custom tools that were developed in the process of creating our dataset. These tools include PyTorch and PyTorch Lightning API abstractions to load and model the data. Our dataset contains replays from major and premiere StarCraft II tournaments since 2016. To prepare the dataset, we processed 55 tournament "replaypacks" that contained 17930 files with game-state information. Based on initial investigation of available StarCraft II datasets, we observed that our dataset is the largest publicly available source of StarCraft II esports data upon its publication. Analysis of the extracted data holds promise for further Artificial Intelligence (AI), Machine Learning (ML), psychological, Human-Computer Interaction (HCI), and sports-related studies in a variety of supervised and self-supervised tasks.
Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning
Having accurate, detailed, and up-to-date information about the location and behavior of animals in the wild would revolutionize our ability to study and conserve ecosystems. We investigate the ability to automatically, accurately, and inexpensively collect such data, which could transform many fields of biology, ecology, and zoology into "big data" sciences. Motion sensor "camera traps" enable collecting wildlife pictures inexpensively, unobtrusively, and frequently. However, extracting information from these pictures remains an expensive, time-consuming, manual task. We demonstrate that such information can be automatically extracted by deep learning, a cutting-edge type of artificial intelligence. We train deep convolutional neural networks to identify, count, and describe the behaviors of 48 species in the 3.2-million-image Snapshot Serengeti dataset. Our deep neural networks automatically identify animals with over 93.8% accuracy, and we expect that number to improve rapidly in years to come. More importantly, if our system classifies only images it is confident about, our system can automate animal identification for 99.3% of the data while still performing at the same 96.6% accuracy as that of crowdsourced teams of human volunteers, saving more than 8.4 years (at 40 hours per week) of human labeling effort (i.e. over 17,000 hours) on this 3.2-million-image dataset. Those efficiency gains immediately highlight the importance of using deep neural networks to automate data extraction from camera-trap images. Our results suggest that this technology could enable the inexpensive, unobtrusive, high-volume, and even real-time collection of a wealth of information about vast numbers of animals in the wild.
Position: Privacy Is Not Just Memorization!
The discourse on privacy risks in Large Language Models (LLMs) has disproportionately focused on verbatim memorization of training data, while a constellation of more immediate and scalable privacy threats remain underexplored. This position paper argues that the privacy landscape of LLM systems extends far beyond training data extraction, encompassing risks from data collection practices, inference-time context leakage, autonomous agent capabilities, and the democratization of surveillance through deep inference attacks. We present a comprehensive taxonomy of privacy risks across the LLM lifecycle -- from data collection through deployment -- and demonstrate through case studies how current privacy frameworks fail to address these multifaceted threats. Through a longitudinal analysis of 1,322 AI/ML privacy papers published at leading conferences over the past decade (2016--2025), we reveal that while memorization receives outsized attention in technical research, the most pressing privacy harms lie elsewhere, where current technical approaches offer little traction and viable paths forward remain unclear. We call for a fundamental shift in how the research community approaches LLM privacy, moving beyond the narrow focus of current technical solutions and embracing interdisciplinary approaches that address the sociotechnical nature of these emerging threats.
Teach LLMs to Phish: Stealing Private Information from Language Models
When large language models are trained on private data, it can be a significant privacy risk for them to memorize and regurgitate sensitive information. In this work, we propose a new practical data extraction attack that we call "neural phishing". This attack enables an adversary to target and extract sensitive or personally identifiable information (PII), e.g., credit card numbers, from a model trained on user data with upwards of 10% attack success rates, at times, as high as 50%. Our attack assumes only that an adversary can insert as few as 10s of benign-appearing sentences into the training dataset using only vague priors on the structure of the user data.
RealSyn: An Effective and Scalable Multimodal Interleaved Document Transformation Paradigm
After pre-training on extensive image-text pairs, Contrastive Language-Image Pre-training (CLIP) demonstrates promising performance on a wide variety of benchmarks. However, a substantial volume of non-paired data, such as multimodal interleaved documents, remains underutilized for vision-language representation learning. To fully leverage these unpaired documents, we initially establish a Real-World Data Extraction pipeline to extract high-quality images and texts. Then we design a hierarchical retrieval method to efficiently associate each image with multiple semantically relevant realistic texts. To further enhance fine-grained visual information, we propose an image semantic augmented generation module for synthetic text production. Furthermore, we employ a semantic balance sampling strategy to improve dataset diversity, enabling better learning of long-tail concepts. Based on these innovations, we construct RealSyn, a dataset combining realistic and synthetic texts, available in three scales: 15M, 30M, and 100M. Extensive experiments demonstrate that RealSyn effectively advances vision-language representation learning and exhibits strong scalability. Models pre-trained on RealSyn achieve state-of-the-art performance on multiple downstream tasks. To facilitate future research, the RealSyn dataset and pre-trained model weights are released at https://github.com/deepglint/RealSyn.
Unchecked and Overlooked: Addressing the Checkbox Blind Spot in Large Language Models with CheckboxQA
Checkboxes are critical in real-world document processing where the presence or absence of ticks directly informs data extraction and decision-making processes. Yet, despite the strong performance of Large Vision and Language Models across a wide range of tasks, they struggle with interpreting checkable content. This challenge becomes particularly pressing in industries where a single overlooked checkbox may lead to costly regulatory or contractual oversights. To address this gap, we introduce the CheckboxQA dataset, a targeted resource designed to evaluate and improve model performance on checkbox-related tasks. It reveals the limitations of current models and serves as a valuable tool for advancing document comprehension systems, with significant implications for applications in sectors such as legal tech and finance. The dataset is publicly available at: https://github.com/Snowflake-Labs/CheckboxQA
Security Attacks on LLM-based Code Completion Tools
The rapid development of large language models (LLMs) has significantly advanced code completion capabilities, giving rise to a new generation of LLM-based Code Completion Tools (LCCTs). Unlike general-purpose LLMs, these tools possess unique workflows, integrating multiple information sources as input and prioritizing code suggestions over natural language interaction, which introduces distinct security challenges. Additionally, LCCTs often rely on proprietary code datasets for training, raising concerns about the potential exposure of sensitive data. This paper exploits these distinct characteristics of LCCTs to develop targeted attack methodologies on two critical security risks: jailbreaking and training data extraction attacks. Our experimental results expose significant vulnerabilities within LCCTs, including a 99.4% success rate in jailbreaking attacks on GitHub Copilot and a 46.3% success rate on Amazon Q. Furthermore, We successfully extracted sensitive user data from GitHub Copilot, including 54 real email addresses and 314 physical addresses associated with GitHub usernames. Our study also demonstrates that these code-based attack methods are effective against general-purpose LLMs, such as the GPT series, highlighting a broader security misalignment in the handling of code by modern LLMs. These findings underscore critical security challenges associated with LCCTs and suggest essential directions for strengthening their security frameworks. The example code and attack samples from our research are provided at https://github.com/Sensente/Security-Attacks-on-LCCTs.
Memorized Images in Diffusion Models share a Subspace that can be Located and Deleted
Large-scale text-to-image diffusion models excel in generating high-quality images from textual inputs, yet concerns arise as research indicates their tendency to memorize and replicate training data, raising We also addressed the issue of memorization in diffusion models, where models tend to replicate exact training samples raising copyright infringement and privacy issues. Efforts within the text-to-image community to address memorization explore causes such as data duplication, replicated captions, or trigger tokens, proposing per-prompt inference-time or training-time mitigation strategies. In this paper, we focus on the feed-forward layers and begin by contrasting neuron activations of a set of memorized and non-memorized prompts. Experiments reveal a surprising finding: many different sets of memorized prompts significantly activate a common subspace in the model, demonstrating, for the first time, that memorization in the diffusion models lies in a special subspace. Subsequently, we introduce a novel post-hoc method for editing pre-trained models, whereby memorization is mitigated through the straightforward pruning of weights in specialized subspaces, avoiding the need to disrupt the training or inference process as seen in prior research. Finally, we demonstrate the robustness of the pruned model against training data extraction attacks, thereby unveiling new avenues for a practical and one-for-all solution to memorization.
MapQA: A Dataset for Question Answering on Choropleth Maps
Choropleth maps are a common visual representation for region-specific tabular data and are used in a number of different venues (newspapers, articles, etc). These maps are human-readable but are often challenging to deal with when trying to extract data for screen readers, analyses, or other related tasks. Recent research into Visual-Question Answering (VQA) has studied question answering on human-generated charts (ChartQA), such as bar, line, and pie charts. However, little work has paid attention to understanding maps; general VQA models, and ChartQA models, suffer when asked to perform this task. To facilitate and encourage research in this area, we present MapQA, a large-scale dataset of ~800K question-answer pairs over ~60K map images. Our task tests various levels of map understanding, from surface questions about map styles to complex questions that require reasoning on the underlying data. We present the unique challenges of MapQA that frustrate most strong baseline algorithms designed for ChartQA and general VQA tasks. We also present a novel algorithm, Visual Multi-Output Data Extraction based QA (V-MODEQA) for MapQA. V-MODEQA extracts the underlying structured data from a map image with a multi-output model and then performs reasoning on the extracted data. Our experimental results show that V-MODEQA has better overall performance and robustness on MapQA than the state-of-the-art ChartQA and VQA algorithms by capturing the unique properties in map question answering.
Uncovering Zero-Shot Generalization Gaps in Time-Series Foundation Models Using Real-World Videos
Recent research on time-series foundation models (TSFMs) has underscored the scarcity of real-world data, often supplemented with synthetic sources in existing datasets, whose generalizability remains however debated. As such, in this work, we propose a novel benchmarking approach: in particular, we aim at building a curated dataset reflecting real world physical temporal dynamics, extracting temporal signals from real-world videos using optical flow. As such, we introduce REAL-V-TSFM, a novel dataset designed to capture rich and diverse time series derived from real-world videos. Experimental results on state-of-the-art TSFMs under zero-shot forecasting show that, despite strong performance on conventional benchmarks, these models exhibit performance degradation on the proposed dataset, suggesting limited generalizability to novel datasets. These findings underscore the need for novel approaches to acquiring time series data and highlight the lack of universality in recent TSFMs, while further validating the effectiveness of our video-based time series data extraction pipeline.
Constrained Decoding of Diffusion LLMs with Context-Free Grammars
Large language models (LLMs) have shown promising performance across diverse domains. Many practical applications of LLMs, such as code completion and structured data extraction, require adherence to syntactic constraints specified by a formal language. Yet, due to their probabilistic nature, LLM output is not guaranteed to adhere to such formal languages. Prior work has proposed constrained decoding as a means to restrict LLM generation to particular formal languages. However, existing works are not applicable to the emerging paradigm of diffusion LLMs, when used in practical scenarios such as the generation of formally correct C++ or JSON output. In this paper we address this challenge and present the first constrained decoding method for diffusion models, one that can handle formal languages captured by context-free grammars. We begin by reducing constrained decoding to the more general additive infilling problem, which asks whether a partial output can be completed to a valid word in the target language. This problem also naturally subsumes the previously unaddressed multi-region infilling constrained decoding. We then reduce this problem to the task of deciding whether the intersection of the target language and a regular language is empty and present an efficient algorithm to solve it for context-free languages. Empirical results on various applications, such as C++ code infilling and structured data extraction in JSON, demonstrate that our method achieves near-perfect syntactic correctness while consistently preserving or improving functional correctness. Importantly, our efficiency optimizations ensure that the computational overhead remains practical.
A Systematic Literature Review of Automated ICD Coding and Classification Systems using Discharge Summaries
Codification of free-text clinical narratives have long been recognised to be beneficial for secondary uses such as funding, insurance claim processing and research. The current scenario of assigning codes is a manual process which is very expensive, time-consuming and error prone. In recent years, many researchers have studied the use of Natural Language Processing (NLP), related Machine Learning (ML) and Deep Learning (DL) methods and techniques to resolve the problem of manual coding of clinical narratives and to assist human coders to assign clinical codes more accurately and efficiently. This systematic literature review provides a comprehensive overview of automated clinical coding systems that utilises appropriate NLP, ML and DL methods and techniques to assign ICD codes to discharge summaries. We have followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA) guidelines and conducted a comprehensive search of publications from January, 2010 to December 2020 in four academic databases- PubMed, ScienceDirect, Association for Computing Machinery(ACM) Digital Library, and the Association for Computational Linguistics(ACL) Anthology. We reviewed 7,556 publications; 38 met the inclusion criteria. This review identified: datasets having discharge summaries; NLP techniques along with some other data extraction processes, different feature extraction and embedding techniques. To measure the performance of classification methods, different evaluation metrics are used. Lastly, future research directions are provided to scholars who are interested in automated ICD code assignment. Efforts are still required to improve ICD code prediction accuracy, availability of large-scale de-identified clinical corpora with the latest version of the classification system. This can be a platform to guide and share knowledge with the less experienced coders and researchers.
MolMole: Molecule Mining from Scientific Literature
The extraction of molecular structures and reaction data from scientific documents is challenging due to their varied, unstructured chemical formats and complex document layouts. To address this, we introduce MolMole, a vision-based deep learning framework that unifies molecule detection, reaction diagram parsing, and optical chemical structure recognition (OCSR) into a single pipeline for automating the extraction of chemical data directly from page-level documents. Recognizing the lack of a standard page-level benchmark and evaluation metric, we also present a testset of 550 pages annotated with molecule bounding boxes, reaction labels, and MOLfiles, along with a novel evaluation metric. Experimental results demonstrate that MolMole outperforms existing toolkits on both our benchmark and public datasets. The benchmark testset will be publicly available, and the MolMole toolkit will be accessible soon through an interactive demo on the LG AI Research website. For commercial inquiries, please contact us at mailto:contact_ddu@lgresearch.ai{contact\_ddu@lgresearch.ai}.
Are Large Pre-Trained Language Models Leaking Your Personal Information?
Are Large Pre-Trained Language Models Leaking Your Personal Information? In this paper, we analyze whether Pre-Trained Language Models (PLMs) are prone to leaking personal information. Specifically, we query PLMs for email addresses with contexts of the email address or prompts containing the owner's name. We find that PLMs do leak personal information due to memorization. However, since the models are weak at association, the risk of specific personal information being extracted by attackers is low. We hope this work could help the community to better understand the privacy risk of PLMs and bring new insights to make PLMs safe.
Coercing LLMs to do and reveal (almost) anything
It has recently been shown that adversarial attacks on large language models (LLMs) can "jailbreak" the model into making harmful statements. In this work, we argue that the spectrum of adversarial attacks on LLMs is much larger than merely jailbreaking. We provide a broad overview of possible attack surfaces and attack goals. Based on a series of concrete examples, we discuss, categorize and systematize attacks that coerce varied unintended behaviors, such as misdirection, model control, denial-of-service, or data extraction. We analyze these attacks in controlled experiments, and find that many of them stem from the practice of pre-training LLMs with coding capabilities, as well as the continued existence of strange "glitch" tokens in common LLM vocabularies that should be removed for security reasons.
AskIt: Unified Programming Interface for Programming with Large Language Models
In the evolving landscape of software development, Large Language Models (LLMs) exhibit a unique phenomenon known as emergent abilities, demonstrating adeptness across numerous tasks, from text summarization to code generation. While these abilities open up novel avenues in software design and crafting, their incorporation presents substantial challenges. Developers grapple with decisions surrounding the direct embedding of LLMs within applications versus employing them for code generation. Moreover, effective prompt design becomes a critical concern, given the necessity of data extraction from natural language outputs. To address these intricacies, this paper introduces AskIt, a domain-specific language (DSL) specifically designed for LLMs. AskIt simplifies LLM integration, offering type-guided output control, template-based function definitions, and a unified interface that diminishes the distinction between LLM-based code generation and application integration. Furthermore, through Programming by Example (PBE), AskIt harnesses the power of few-shot learning at the programming language level. Our evaluations underscore AskIt's potency. Across 50 tasks, AskIt generated concise prompts for the given tasks, achieving a 16.14% reduction in prompt length relative to benchmarks. Additionally, by enabling the transition from direct LLM application usage to function generation, AskIt achieved significant speedups, as observed in our GSM8K benchmark experiments. Through these advancements, AskIt streamlines the integration of LLMs in software development, offering a more efficient, versatile approach for leveraging emergent abilities. The implementations of AskIt in TypeScript and Python are available at https://github.com/katsumiok/ts-askit and https://github.com/katsumiok/pyaskit, respectively.
ChartAB: A Benchmark for Chart Grounding & Dense Alignment
Charts play an important role in visualization, reasoning, data analysis, and the exchange of ideas among humans. However, existing vision-language models (VLMs) still lack accurate perception of details and struggle to extract fine-grained structures from charts. Such limitations in chart grounding also hinder their ability to compare multiple charts and reason over them. In this paper, we introduce a novel "ChartAlign Benchmark (ChartAB)" to provide a comprehensive evaluation of VLMs in chart grounding tasks, i.e., extracting tabular data, localizing visualization elements, and recognizing various attributes from charts of diverse types and complexities. We design a JSON template to facilitate the calculation of evaluation metrics specifically tailored for each grounding task. By incorporating a novel two-stage inference workflow, the benchmark can further evaluate VLMs' capability to align and compare elements/attributes across two charts. Our analysis of evaluations on several recent VLMs reveals new insights into their perception biases, weaknesses, robustness, and hallucinations in chart understanding. These findings highlight the fine-grained discrepancies among VLMs in chart understanding tasks and point to specific skills that need to be strengthened in current models.
Manalyzer: End-to-end Automated Meta-analysis with Multi-agent System
Meta-analysis is a systematic research methodology that synthesizes data from multiple existing studies to derive comprehensive conclusions. This approach not only mitigates limitations inherent in individual studies but also facilitates novel discoveries through integrated data analysis. Traditional meta-analysis involves a complex multi-stage pipeline including literature retrieval, paper screening, and data extraction, which demands substantial human effort and time. However, while LLM-based methods can accelerate certain stages, they still face significant challenges, such as hallucinations in paper screening and data extraction. In this paper, we propose a multi-agent system, Manalyzer, which achieves end-to-end automated meta-analysis through tool calls. The hybrid review, hierarchical extraction, self-proving, and feedback checking strategies implemented in Manalyzer significantly alleviate these two hallucinations. To comprehensively evaluate the performance of meta-analysis, we construct a new benchmark comprising 729 papers across 3 domains, encompassing text, image, and table modalities, with over 10,000 data points. Extensive experiments demonstrate that Manalyzer achieves significant performance improvements over the LLM baseline in multi meta-analysis tasks. Project page: https://black-yt.github.io/meta-analysis-page/ .
Probing the limitations of multimodal language models for chemistry and materials research
Recent advancements in artificial intelligence have sparked interest in scientific assistants that could support researchers across the full spectrum of scientific workflows, from literature review to experimental design and data analysis. A key capability for such systems is the ability to process and reason about scientific information in both visual and textual forms - from interpreting spectroscopic data to understanding laboratory setups. Here, we introduce MaCBench, a comprehensive benchmark for evaluating how vision-language models handle real-world chemistry and materials science tasks across three core aspects: data extraction, experimental understanding, and results interpretation. Through a systematic evaluation of leading models, we find that while these systems show promising capabilities in basic perception tasks - achieving near-perfect performance in equipment identification and standardized data extraction - they exhibit fundamental limitations in spatial reasoning, cross-modal information synthesis, and multi-step logical inference. Our insights have important implications beyond chemistry and materials science, suggesting that developing reliable multimodal AI scientific assistants may require advances in curating suitable training data and approaches to training those models.
Flash-LLM: Enabling Cost-Effective and Highly-Efficient Large Generative Model Inference with Unstructured Sparsity
With the fast growth of parameter size, it becomes increasingly challenging to deploy large generative models as they typically require large GPU memory consumption and massive computation. Unstructured model pruning has been a common approach to reduce both GPU memory footprint and the overall computation while retaining good model accuracy. However, the existing solutions do not provide a highly-efficient support for handling unstructured sparsity on modern GPUs, especially on the highly-structured Tensor Core hardware. Therefore, we propose Flash-LLM for enabling low-cost and highly-efficient large generative model inference with the sophisticated support of unstructured sparsity on high-performance but highly restrictive Tensor Cores. Based on our key observation that the main bottleneck of generative model inference is the several skinny matrix multiplications for which Tensor Cores would be significantly under-utilized due to low computational intensity, we propose a general Load-as-Sparse and Compute-as-Dense methodology for unstructured sparse matrix multiplication. The basic insight is to address the significant memory bandwidth bottleneck while tolerating redundant computations that are not critical for end-to-end performance on Tensor Cores. Based on this, we design an effective software framework for Tensor Core based unstructured SpMM, leveraging on-chip resources for efficient sparse data extraction and computation/memory-access overlapping. At SpMM kernel level, Flash-LLM significantly outperforms the state-of-the-art library, i.e., Sputnik and SparTA by an average of 2.9x and 1.5x, respectively. At end-to-end framework level on OPT-30B/66B/175B models, for tokens per GPU-second, Flash-LLM achieves up to 3.8x and 3.6x improvement over DeepSpeed and FasterTransformer, respectively, with significantly lower inference cost.
REAL-Prover: Retrieval Augmented Lean Prover for Mathematical Reasoning
Nowadays, formal theorem provers have made monumental progress on high-school and competition-level mathematics, but few of them generalize to more advanced mathematics. In this paper, we present REAL-Prover, a new open-source stepwise theorem prover for Lean 4 to push this boundary. This prover, based on our fine-tuned large language model (REAL-Prover-v1) and integrated with a retrieval system (Leansearch-PS), notably boosts performance on solving college-level mathematics problems. To train REAL-Prover-v1, we developed HERALD-AF, a data extraction pipeline that converts natural language math problems into formal statements, and a new open-source Lean 4 interactive environment (Jixia-interactive) to facilitate synthesis data collection. In our experiments, our prover using only supervised fine-tune achieves competitive results with a 23.7% success rate (Pass@64) on the ProofNet dataset-comparable to state-of-the-art (SOTA) models. To further evaluate our approach, we introduce FATE-M, a new benchmark focused on algebraic problems, where our prover achieves a SOTA success rate of 56.7% (Pass@64).
SurgRAW: Multi-Agent Workflow with Chain-of-Thought Reasoning for Surgical Intelligence
Integration of Vision-Language Models (VLMs) in surgical intelligence is hindered by hallucinations, domain knowledge gaps, and limited understanding of task interdependencies within surgical scenes, undermining clinical reliability. While recent VLMs demonstrate strong general reasoning and thinking capabilities, they still lack the domain expertise and task-awareness required for precise surgical scene interpretation. Although Chain-of-Thought (CoT) can structure reasoning more effectively, current approaches rely on self-generated CoT steps, which often exacerbate inherent domain gaps and hallucinations. To overcome this, we present SurgRAW, a CoT-driven multi-agent framework that delivers transparent, interpretable insights for most tasks in robotic-assisted surgery. By employing specialized CoT prompts across five tasks: instrument recognition, action recognition, action prediction, patient data extraction, and outcome assessment, SurgRAW mitigates hallucinations through structured, domain-aware reasoning. Retrieval-Augmented Generation (RAG) is also integrated to external medical knowledge to bridge domain gaps and improve response reliability. Most importantly, a hierarchical agentic system ensures that CoT-embedded VLM agents collaborate effectively while understanding task interdependencies, with a panel discussion mechanism promotes logical consistency. To evaluate our method, we introduce SurgCoTBench, the first reasoning-based dataset with structured frame-level annotations. With comprehensive experiments, we demonstrate the effectiveness of proposed SurgRAW with 29.32% accuracy improvement over baseline VLMs on 12 robotic procedures, achieving the state-of-the-art performance and advancing explainable, trustworthy, and autonomous surgical assistance.
The Right to AI
This paper proposes a Right to AI, which asserts that individuals and communities should meaningfully participate in the development and governance of the AI systems that shape their lives. Motivated by the increasing deployment of AI in critical domains and inspired by Henri Lefebvre's concept of the Right to the City, we reconceptualize AI as a societal infrastructure, rather than merely a product of expert design. In this paper, we critically evaluate how generative agents, large-scale data extraction, and diverse cultural values bring new complexities to AI oversight. The paper proposes that grassroots participatory methodologies can mitigate biased outcomes and enhance social responsiveness. It asserts that data is socially produced and should be managed and owned collectively. Drawing on Sherry Arnstein's Ladder of Citizen Participation and analyzing nine case studies, the paper develops a four-tier model for the Right to AI that situates the current paradigm and envisions an aspirational future. It proposes recommendations for inclusive data ownership, transparent design processes, and stakeholder-driven oversight. We also discuss market-led and state-centric alternatives and argue that participatory approaches offer a better balance between technical efficiency and democratic legitimacy.
MIDV-500: A Dataset for Identity Documents Analysis and Recognition on Mobile Devices in Video Stream
A lot of research has been devoted to identity documents analysis and recognition on mobile devices. However, no publicly available datasets designed for this particular problem currently exist. There are a few datasets which are useful for associated subtasks but in order to facilitate a more comprehensive scientific and technical approach to identity document recognition more specialized datasets are required. In this paper we present a Mobile Identity Document Video dataset (MIDV-500) consisting of 500 video clips for 50 different identity document types with ground truth which allows to perform research in a wide scope of document analysis problems. The paper presents characteristics of the dataset and evaluation results for existing methods of face detection, text line recognition, and document fields data extraction. Since an important feature of identity documents is their sensitiveness as they contain personal data, all source document images used in MIDV-500 are either in public domain or distributed under public copyright licenses. The main goal of this paper is to present a dataset. However, in addition and as a baseline, we present evaluation results for existing methods for face detection, text line recognition, and document data extraction, using the presented dataset. (The dataset is available for download at ftp://smartengines.com/midv-500/.)
LatteReview: A Multi-Agent Framework for Systematic Review Automation Using Large Language Models
Systematic literature reviews and meta-analyses are essential for synthesizing research insights, but they remain time-intensive and labor-intensive due to the iterative processes of screening, evaluation, and data extraction. This paper introduces and evaluates LatteReview, a Python-based framework that leverages large language models (LLMs) and multi-agent systems to automate key elements of the systematic review process. Designed to streamline workflows while maintaining rigor, LatteReview utilizes modular agents for tasks such as title and abstract screening, relevance scoring, and structured data extraction. These agents operate within orchestrated workflows, supporting sequential and parallel review rounds, dynamic decision-making, and iterative refinement based on user feedback. LatteReview's architecture integrates LLM providers, enabling compatibility with both cloud-based and locally hosted models. The framework supports features such as Retrieval-Augmented Generation (RAG) for incorporating external context, multimodal reviews, Pydantic-based validation for structured inputs and outputs, and asynchronous programming for handling large-scale datasets. The framework is available on the GitHub repository, with detailed documentation and an installable package.
YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information Extraction
The difficulty of the information extraction task lies in dealing with the task-specific label schemas and heterogeneous data structures. Recent work has proposed methods based on large language models to uniformly model different information extraction tasks. However, these existing methods are deficient in their information extraction capabilities for Chinese languages other than English. In this paper, we propose an end-to-end chat-enhanced instruction tuning framework for universal information extraction (YAYI-UIE), which supports both Chinese and English. Specifically, we utilize dialogue data and information extraction data to enhance the information extraction performance jointly. Experimental results show that our proposed framework achieves state-of-the-art performance on Chinese datasets while also achieving comparable performance on English datasets under both supervised settings and zero-shot settings.
PET: An Annotated Dataset for Process Extraction from Natural Language Text
Process extraction from text is an important task of process discovery, for which various approaches have been developed in recent years. However, in contrast to other information extraction tasks, there is a lack of gold-standard corpora of business process descriptions that are carefully annotated with all the entities and relationships of interest. Due to this, it is currently hard to compare the results obtained by extraction approaches in an objective manner, whereas the lack of annotated texts also prevents the application of data-driven information extraction methodologies, typical of the natural language processing field. Therefore, to bridge this gap, we present the PET dataset, a first corpus of business process descriptions annotated with activities, gateways, actors, and flow information. We present our new resource, including a variety of baselines to benchmark the difficulty and challenges of business process extraction from text. PET can be accessed via huggingface.co/datasets/patriziobellan/PET
Dataset and Baseline System for Multi-lingual Extraction and Normalization of Temporal and Numerical Expressions
Temporal and numerical expression understanding is of great importance in many downstream Natural Language Processing (NLP) and Information Retrieval (IR) tasks. However, much previous work covers only a few sub-types and focuses only on entity extraction, which severely limits the usability of identified mentions. In order for such entities to be useful in downstream scenarios, coverage and granularity of sub-types are important; and, even more so, providing resolution into concrete values that can be manipulated. Furthermore, most previous work addresses only a handful of languages. Here we describe a multi-lingual evaluation dataset - NTX - covering diverse temporal and numerical expressions across 14 languages and covering extraction, normalization, and resolution. Along with the dataset we provide a robust rule-based system as a strong baseline for comparisons against other models to be evaluated in this dataset. Data and code are available at https://aka.ms/NTX.
DreamOmni2: Multimodal Instruction-based Editing and Generation
Recent advancements in instruction-based image editing and subject-driven generation have garnered significant attention, yet both tasks still face limitations in meeting practical user needs. Instruction-based editing relies solely on language instructions, which often fail to capture specific editing details, making reference images necessary. Meanwhile, subject-driven generation is limited to combining concrete objects or people, overlooking broader, abstract concepts. To address these challenges, we propose two novel tasks: multimodal instruction-based editing and generation. These tasks support both text and image instructions and extend the scope to include both concrete and abstract concepts, greatly enhancing their practical applications. We introduce DreamOmni2, tackling two primary challenges: data creation and model framework design. Our data synthesis pipeline consists of three steps: (1) using a feature mixing method to create extraction data for both abstract and concrete concepts, (2) generating multimodal instruction-based editing training data using the editing and extraction models, and (3) further applying the extraction model to create training data for multimodal instruction-based editing. For the framework, to handle multi-image input, we propose an index encoding and position encoding shift scheme, which helps the model distinguish images and avoid pixel confusion. Additionally, we introduce joint training with the VLM and our generation/editing model to better process complex instructions. In addition, we have proposed comprehensive benchmarks for these two new tasks to drive their development. Experiments show that DreamOmni2 has achieved impressive results. Models and codes will be released.
PlotEdit: Natural Language-Driven Accessible Chart Editing in PDFs via Multimodal LLM Agents
Chart visualizations, while essential for data interpretation and communication, are predominantly accessible only as images in PDFs, lacking source data tables and stylistic information. To enable effective editing of charts in PDFs or digital scans, we present PlotEdit, a novel multi-agent framework for natural language-driven end-to-end chart image editing via self-reflective LLM agents. PlotEdit orchestrates five LLM agents: (1) Chart2Table for data table extraction, (2) Chart2Vision for style attribute identification, (3) Chart2Code for retrieving rendering code, (4) Instruction Decomposition Agent for parsing user requests into executable steps, and (5) Multimodal Editing Agent for implementing nuanced chart component modifications - all coordinated through multimodal feedback to maintain visual fidelity. PlotEdit outperforms existing baselines on the ChartCraft dataset across style, layout, format, and data-centric edits, enhancing accessibility for visually challenged users and improving novice productivity.
Interpretable Bangla Sarcasm Detection using BERT and Explainable AI
A positive phrase or a sentence with an underlying negative motive is usually defined as sarcasm that is widely used in today's social media platforms such as Facebook, Twitter, Reddit, etc. In recent times active users in social media platforms are increasing dramatically which raises the need for an automated NLP-based system that can be utilized in various tasks such as determining market demand, sentiment analysis, threat detection, etc. However, since sarcasm usually implies the opposite meaning and its detection is frequently a challenging issue, data meaning extraction through an NLP-based model becomes more complicated. As a result, there has been a lot of study on sarcasm detection in English over the past several years, and there's been a noticeable improvement and yet sarcasm detection in the Bangla language's state remains the same. In this article, we present a BERT-based system that can achieve 99.60\% while the utilized traditional machine learning algorithms are only capable of achieving 89.93\%. Additionally, we have employed Local Interpretable Model-Agnostic Explanations that introduce explainability to our system. Moreover, we have utilized a newly collected bangla sarcasm dataset, BanglaSarc that was constructed specifically for the evaluation of this study. This dataset consists of fresh records of sarcastic and non-sarcastic comments, the majority of which are acquired from Facebook and YouTube comment sections.
CaBaGe: Data-Free Model Extraction using ClAss BAlanced Generator Ensemble
Machine Learning as a Service (MLaaS) is often provided as a pay-per-query, black-box system to clients. Such a black-box approach not only hinders open replication, validation, and interpretation of model results, but also makes it harder for white-hat researchers to identify vulnerabilities in the MLaaS systems. Model extraction is a promising technique to address these challenges by reverse-engineering black-box models. Since training data is typically unavailable for MLaaS models, this paper focuses on the realistic version of it: data-free model extraction. We propose a data-free model extraction approach, CaBaGe, to achieve higher model extraction accuracy with a small number of queries. Our innovations include (1) a novel experience replay for focusing on difficult training samples; (2) an ensemble of generators for steadily producing diverse synthetic data; and (3) a selective filtering process for querying the victim model with harder, more balanced samples. In addition, we create a more realistic setting, for the first time, where the attacker has no knowledge of the number of classes in the victim training data, and create a solution to learn the number of classes on the fly. Our evaluation shows that CaBaGe outperforms existing techniques on seven datasets -- MNIST, FMNIST, SVHN, CIFAR-10, CIFAR-100, ImageNet-subset, and Tiny ImageNet -- with an accuracy improvement of the extracted models by up to 43.13%. Furthermore, the number of queries required to extract a clone model matching the final accuracy of prior work is reduced by up to 75.7%.
Improving Keyphrase Extraction with Data Augmentation and Information Filtering
Keyphrase extraction is one of the essential tasks for document understanding in NLP. While the majority of the prior works are dedicated to the formal setting, e.g., books, news or web-blogs, informal texts such as video transcripts are less explored. To address this limitation, in this work we present a novel corpus and method for keyphrase extraction from the transcripts of the videos streamed on the Behance platform. More specifically, in this work, a novel data augmentation is proposed to enrich the model with the background knowledge about the keyphrase extraction task from other domains. Extensive experiments on the proposed dataset dataset show the effectiveness of the introduced method.
DARE: Data Augmented Relation Extraction with GPT-2
Real-world Relation Extraction (RE) tasks are challenging to deal with, either due to limited training data or class imbalance issues. In this work, we present Data Augmented Relation Extraction(DARE), a simple method to augment training data by properly fine-tuning GPT-2 to generate examples for specific relation types. The generated training data is then used in combination with the gold dataset to train a BERT-based RE classifier. In a series of experiments we show the advantages of our method, which leads in improvements of up to 11 F1 score points against a strong base-line. Also, DARE achieves new state of the art in three widely used biomedical RE datasets surpassing the previous best results by 4.7 F1 points on average.
DEGREE: A Data-Efficient Generation-Based Event Extraction Model
Event extraction requires high-quality expert human annotations, which are usually expensive. Therefore, learning a data-efficient event extraction model that can be trained with only a few labeled examples has become a crucial challenge. In this paper, we focus on low-resource end-to-end event extraction and propose DEGREE, a data-efficient model that formulates event extraction as a conditional generation problem. Given a passage and a manually designed prompt, DEGREE learns to summarize the events mentioned in the passage into a natural sentence that follows a predefined pattern. The final event predictions are then extracted from the generated sentence with a deterministic algorithm. DEGREE has three advantages to learn well with less training data. First, our designed prompts provide semantic guidance for DEGREE to leverage DEGREE and thus better capture the event arguments. Moreover, DEGREE is capable of using additional weakly-supervised information, such as the description of events encoded in the prompts. Finally, DEGREE learns triggers and arguments jointly in an end-to-end manner, which encourages the model to better utilize the shared knowledge and dependencies among them. Our experimental results demonstrate the strong performance of DEGREE for low-resource event extraction.
Semantic Analysis of Traffic Camera Data: Topic Signal Extraction and Anomalous Event Detection
Traffic Management Centers (TMCs) routinely use traffic cameras to provide situational awareness regarding traffic, road, and weather conditions. Camera footage is quite useful for a variety of diagnostic purposes; yet, most footage is kept for only a few days, if at all. This is largely due to the fact that currently, identification of notable footage is done via manual review by human operators---a laborious and inefficient process. In this article, we propose a semantics-oriented approach to analyzing sequential image data, and demonstrate its application for automatic detection of real-world, anomalous events in weather and traffic conditions. Our approach constructs semantic vector representations of image contents from textual labels which can be easily obtained from off-the-shelf, pretrained image labeling software. These semantic label vectors are used to construct semantic topic signals---time series representations of physical processes---using the Latent Dirichlet Allocation (LDA) topic model. By detecting anomalies in the topic signals, we identify notable footage corresponding to winter storms and anomalous traffic congestion. In validation against real-world events, anomaly detection using semantic topic signals significantly outperforms detection using any individual label signal.
LeakyCLIP: Extracting Training Data from CLIP
Understanding the memorization and privacy leakage risks in Contrastive Language--Image Pretraining (CLIP) is critical for ensuring the security of multimodal models. Recent studies have demonstrated the feasibility of extracting sensitive training examples from diffusion models, with conditional diffusion models exhibiting a stronger tendency to memorize and leak information. In this work, we investigate data memorization and extraction risks in CLIP through the lens of CLIP inversion, a process that aims to reconstruct training images from text prompts. To this end, we introduce LeakyCLIP, a novel attack framework designed to achieve high-quality, semantically accurate image reconstruction from CLIP embeddings. We identify three key challenges in CLIP inversion: 1) non-robust features, 2) limited visual semantics in text embeddings, and 3) low reconstruction fidelity. To address these challenges, LeakyCLIP employs 1) adversarial fine-tuning to enhance optimization smoothness, 2) linear transformation-based embedding alignment, and 3) Stable Diffusion-based refinement to improve fidelity. Empirical results demonstrate the superiority of LeakyCLIP, achieving over 358% improvement in Structural Similarity Index Measure (SSIM) for ViT-B-16 compared to baseline methods on LAION-2B subset. Furthermore, we uncover a pervasive leakage risk, showing that training data membership can even be successfully inferred from the metrics of low-fidelity reconstructions. Our work introduces a practical method for CLIP inversion while offering novel insights into the nature and scope of privacy risks in multimodal models.
Few-shot Model Extraction Attacks against Sequential Recommender Systems
Among adversarial attacks against sequential recommender systems, model extraction attacks represent a method to attack sequential recommendation models without prior knowledge. Existing research has primarily concentrated on the adversary's execution of black-box attacks through data-free model extraction. However, a significant gap remains in the literature concerning the development of surrogate models by adversaries with access to few-shot raw data (10\% even less). That is, the challenge of how to construct a surrogate model with high functional similarity within the context of few-shot data scenarios remains an issue that requires resolution.This study addresses this gap by introducing a novel few-shot model extraction framework against sequential recommenders, which is designed to construct a superior surrogate model with the utilization of few-shot data. The proposed few-shot model extraction framework is comprised of two components: an autoregressive augmentation generation strategy and a bidirectional repair loss-facilitated model distillation procedure. Specifically, to generate synthetic data that closely approximate the distribution of raw data, autoregressive augmentation generation strategy integrates a probabilistic interaction sampler to extract inherent dependencies and a synthesis determinant signal module to characterize user behavioral patterns. Subsequently, bidirectional repair loss, which target the discrepancies between the recommendation lists, is designed as auxiliary loss to rectify erroneous predictions from surrogate models, transferring knowledge from the victim model to the surrogate model effectively. Experiments on three datasets show that the proposed few-shot model extraction framework yields superior surrogate models.
Self-Paced Probabilistic Principal Component Analysis for Data with Outliers
Principal Component Analysis (PCA) is a popular tool for dimensionality reduction and feature extraction in data analysis. There is a probabilistic version of PCA, known as Probabilistic PCA (PPCA). However, standard PCA and PPCA are not robust, as they are sensitive to outliers. To alleviate this problem, this paper introduces the Self-Paced Learning mechanism into PPCA, and proposes a novel method called Self-Paced Probabilistic Principal Component Analysis (SP-PPCA). Furthermore, we design the corresponding optimization algorithm based on the alternative search strategy and the expectation-maximization algorithm. SP-PPCA looks for optimal projection vectors and filters out outliers iteratively. Experiments on both synthetic problems and real-world datasets clearly demonstrate that SP-PPCA is able to reduce or eliminate the impact of outliers.
Cuckoo: An IE Free Rider Hatched by Massive Nutrition in LLM's Nest
Massive high-quality data, both pre-training raw texts and post-training annotations, have been carefully prepared to incubate advanced large language models (LLMs). In contrast, for information extraction (IE), pre-training data, such as BIO-tagged sequences, are hard to scale up. We show that IE models can act as free riders on LLM resources by reframing next-token prediction into extraction for tokens already present in the context. Specifically, our proposed next tokens extraction (NTE) paradigm learns a versatile IE model, Cuckoo, with 102.6M extractive data converted from LLM's pre-training and post-training data. Under the few-shot setting, Cuckoo adapts effectively to traditional and complex instruction-following IE with better performance than existing pre-trained IE models. As a free rider, Cuckoo can naturally evolve with the ongoing advancements in LLM data preparation, benefiting from improvements in LLM training pipelines without additional manual effort.
Multi-StyleGAN: Towards Image-Based Simulation of Time-Lapse Live-Cell Microscopy
Time-lapse fluorescent microscopy (TLFM) combined with predictive mathematical modelling is a powerful tool to study the inherently dynamic processes of life on the single-cell level. Such experiments are costly, complex and labour intensive. A complimentary approach and a step towards in silico experimentation, is to synthesise the imagery itself. Here, we propose Multi-StyleGAN as a descriptive approach to simulate time-lapse fluorescence microscopy imagery of living cells, based on a past experiment. This novel generative adversarial network synthesises a multi-domain sequence of consecutive timesteps. We showcase Multi-StyleGAN on imagery of multiple live yeast cells in microstructured environments and train on a dataset recorded in our laboratory. The simulation captures underlying biophysical factors and time dependencies, such as cell morphology, growth, physical interactions, as well as the intensity of a fluorescent reporter protein. An immediate application is to generate additional training and validation data for feature extraction algorithms or to aid and expedite development of advanced experimental techniques such as online monitoring or control of cells. Code and dataset is available at https://git.rwth-aachen.de/bcs/projects/tp/multi-stylegan.
Knowledge Unlearning for Mitigating Privacy Risks in Language Models
Pretrained Language Models (LMs) memorize a vast amount of knowledge during initial pretraining, including information that may violate the privacy of personal lives and identities. Previous work addressing privacy issues for language models has mostly focused on data preprocessing and differential privacy methods, both requiring re-training the underlying LM. We propose knowledge unlearning as an alternative method to reduce privacy risks for LMs post hoc. We show that simply performing gradient ascent on target token sequences is effective at forgetting them with little to no degradation of general language modeling performances for larger LMs; it sometimes even substantially improves the underlying LM with just a few iterations. We also find that sequential unlearning is better than trying to unlearn all the data at once and that unlearning is highly dependent on which kind of data (domain) is forgotten. By showing comparisons with a previous data preprocessing method and a decoding method known to mitigate privacy risks for LMs, we show that unlearning can give a stronger empirical privacy guarantee in scenarios where the data vulnerable to extraction attacks are known a priori while being much more efficient and robust. We release the code and dataset needed to replicate our results at https://github.com/joeljang/knowledge-unlearning.
Boosting Multimodal Reasoning with MCTS-Automated Structured Thinking
Multimodal large language models (MLLMs) exhibit impressive capabilities but still face challenges in complex visual reasoning. While recent efforts attempt to enhance MLLMs' reasoning by incorporating OpenAI o1-like structured thinking through explicit search structures or teacher-guided distillation, they often struggle to balance performance and efficiency. A critical limitation is their heavy reliance on extensive data and search spaces, resulting in low-efficiency implicit insight extraction and data utilization. To address this, we propose AStar, an Automated Structured thinking paradigm for multimodal reasoning via Monte Carlo Tree Search (MCTS). AStar automatically derives high-level cognitive reasoning patterns from limited data using MCTS-powered hierarchical structures. Building on these explicit patterns, we design a unified reasoning framework that seamlessly integrates models' internal reasoning capabilities and external reasoning guidelines, enabling efficient inference with minimal tree iterations. This novel paradigm strikes a compelling balance between performance and efficiency. Extensive experiments demonstrate AStar's effectiveness, achieving superior accuracy (54.0%) on the MathVerse benchmark with a 7B backbone, surpassing GPT-4o (50.2%) while maintaining substantial data and computational efficiency.
Rethinking E-Commerce Search
E-commerce search and recommendation usually operate on structured data such as product catalogs and taxonomies. However, creating better search and recommendation systems often requires a large variety of unstructured data including customer reviews and articles on the web. Traditionally, the solution has always been converting unstructured data into structured data through information extraction, and conducting search over the structured data. However, this is a costly approach that often has low quality. In this paper, we envision a solution that does entirely the opposite. Instead of converting unstructured data (web pages, customer reviews, etc) to structured data, we instead convert structured data (product inventory, catalogs, taxonomies, etc) into textual data, which can be easily integrated into the text corpus that trains LLMs. Then, search and recommendation can be performed through a Q/A mechanism through an LLM instead of using traditional information retrieval methods over structured data.
Automatically Extracting Numerical Results from Randomized Controlled Trials with Large Language Models
Meta-analyses statistically aggregate the findings of different randomized controlled trials (RCTs) to assess treatment effectiveness. Because this yields robust estimates of treatment effectiveness, results from meta-analyses are considered the strongest form of evidence. However, rigorous evidence syntheses are time-consuming and labor-intensive, requiring manual extraction of data from individual trials to be synthesized. Ideally, language technologies would permit fully automatic meta-analysis, on demand. This requires accurately extracting numerical results from individual trials, which has been beyond the capabilities of natural language processing (NLP) models to date. In this work, we evaluate whether modern large language models (LLMs) can reliably perform this task. We annotate (and release) a modest but granular evaluation dataset of clinical trial reports with numerical findings attached to interventions, comparators, and outcomes. Using this dataset, we evaluate the performance of seven LLMs applied zero-shot for the task of conditionally extracting numerical findings from trial reports. We find that massive LLMs that can accommodate lengthy inputs are tantalizingly close to realizing fully automatic meta-analysis, especially for dichotomous (binary) outcomes (e.g., mortality). However, LLMs -- including ones trained on biomedical texts -- perform poorly when the outcome measures are complex and tallying the results requires inference. This work charts a path toward fully automatic meta-analysis of RCTs via LLMs, while also highlighting the limitations of existing models for this aim.
SEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence
To address the increasing complexity and frequency of cybersecurity incidents emphasized by the recent cybersecurity threat reports with over 10 billion instances, cyber threat intelligence (CTI) plays a critical role in the modern cybersecurity landscape by offering the insights required to understand and combat the constantly evolving nature of cyber threats. Inspired by the powerful capability of large language models (LLMs) in handling complex tasks, in this paper, we introduce a framework to benchmark, elicit, and improve cybersecurity incident analysis and response abilities in LLMs for Security Events (SEvenLLM). Specifically, we create a high-quality bilingual instruction corpus by crawling cybersecurity raw text from cybersecurity websites to overcome the lack of effective data for information extraction. Then, we design a pipeline to auto-select tasks from the tasks pool and convert the raw text into supervised corpora comprised of question and response. The instruction dataset SEvenLLM-Instruct is used to train cybersecurity LLMs with the multi-task learning objective (27 well-designed tasks) for augmenting the analysis of cybersecurity events. Extensive experiments in our curated benchmark (SEvenLLM-bench) demonstrate that SEvenLLM performs more sophisticated threat analysis and fortifies defenses against the evolving landscape of cyber threats.
Safety at Scale: A Comprehensive Survey of Large Model Safety
The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-based Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.
Spoken Dialogue System for Medical Prescription Acquisition on Smartphone: Development, Corpus and Evaluation
Hospital information systems (HIS) have become an essential part of healthcare institutions and now incorporate prescribing support software. Prescription support software allows for structured information capture, which improves the safety, appropriateness and efficiency of prescriptions and reduces the number of adverse drug events (ADEs). However, such a system increases the amount of time physicians spend at a computer entering information instead of providing medical care. In addition, any new visiting clinician must learn to manage complex interfaces since each HIS has its own interfaces. In this paper, we present a natural language interface for e-prescribing software in the form of a spoken dialogue system accessible on a smartphone. This system allows prescribers to record their prescriptions verbally, a form of interaction closer to their usual practice. The system extracts the formal representation of the prescription ready to be checked by the prescribing software and uses the dialogue to request mandatory information, correct errors or warn of particular situations. Since, to the best of our knowledge, there is no existing voice-based prescription dialogue system, we present the system developed in a low-resource environment, focusing on dialogue modeling, semantic extraction and data augmentation. The system was evaluated in the wild with 55 participants. This evaluation showed that our system has an average prescription time of 66.15 seconds for physicians and 35.64 seconds for other experts, and a task success rate of 76\% for physicians and 72\% for other experts. All evaluation data were recorded and annotated to form PxCorpus, the first spoken drug prescription corpus that has been made fully available to the community (https://doi.org/10.5281/zenodo.6524162).
Beyond Extraction: Contextualising Tabular Data for Efficient Summarisation by Language Models
The conventional use of the Retrieval-Augmented Generation (RAG) architecture has proven effective for retrieving information from diverse documents. However, challenges arise in handling complex table queries, especially within PDF documents containing intricate tabular structures.This research introduces an innovative approach to enhance the accuracy of complex table queries in RAG-based systems. Our methodology involves storing PDFs in the retrieval database and extracting tabular content separately. The extracted tables undergo a process of context enrichment, concatenating headers with corresponding values. To ensure a comprehensive understanding of the enriched data, we employ a fine-tuned version of the Llama-2-chat language model for summarisation within the RAG architecture. Furthermore, we augment the tabular data with contextual sense using the ChatGPT 3.5 API through a one-shot prompt. This enriched data is then fed into the retrieval database alongside other PDFs. Our approach aims to significantly improve the precision of complex table queries, offering a promising solution to a longstanding challenge in information retrieval.
GuideX: Guided Synthetic Data Generation for Zero-Shot Information Extraction
Information Extraction (IE) systems are traditionally domain-specific, requiring costly adaptation that involves expert schema design, data annotation, and model training. While Large Language Models have shown promise in zero-shot IE, performance degrades significantly in unseen domains where label definitions differ. This paper introduces GUIDEX, a novel method that automatically defines domain-specific schemas, infers guidelines, and generates synthetically labeled instances, allowing for better out-of-domain generalization. Fine-tuning Llama 3.1 with GUIDEX sets a new state-of-the-art across seven zeroshot Named Entity Recognition benchmarks. Models trained with GUIDEX gain up to 7 F1 points over previous methods without humanlabeled data, and nearly 2 F1 points higher when combined with it. Models trained on GUIDEX demonstrate enhanced comprehension of complex, domain-specific annotation schemas. Code, models, and synthetic datasets are available at neilus03.github.io/guidex.com
Scalable Extraction of Training Data from (Production) Language Models
This paper studies extractable memorization: training data that an adversary can efficiently extract by querying a machine learning model without prior knowledge of the training dataset. We show an adversary can extract gigabytes of training data from open-source language models like Pythia or GPT-Neo, semi-open models like LLaMA or Falcon, and closed models like ChatGPT. Existing techniques from the literature suffice to attack unaligned models; in order to attack the aligned ChatGPT, we develop a new divergence attack that causes the model to diverge from its chatbot-style generations and emit training data at a rate 150x higher than when behaving properly. Our methods show practical attacks can recover far more data than previously thought, and reveal that current alignment techniques do not eliminate memorization.
Relation Extraction in underexplored biomedical domains: A diversity-optimised sampling and synthetic data generation approach
The sparsity of labelled data is an obstacle to the development of Relation Extraction models and the completion of databases in various biomedical areas. While being of high interest in drug-discovery, the natural-products literature, reporting the identification of potential bioactive compounds from organisms, is a concrete example of such an overlooked topic. To mark the start of this new task, we created the first curated evaluation dataset and extracted literature items from the LOTUS database to build training sets. To this end, we developed a new sampler inspired by diversity metrics in ecology, named Greedy Maximum Entropy sampler, or GME-sampler (https://github.com/idiap/gme-sampler). The strategic optimization of both balance and diversity of the selected items in the evaluation set is important given the resource-intensive nature of manual curation. After quantifying the noise in the training set, in the form of discrepancies between the input abstracts text and the expected output labels, we explored different strategies accordingly. Framing the task as an end-to-end Relation Extraction, we evaluated the performance of standard fine-tuning as a generative task and few-shot learning with open Large Language Models (LLaMA 7B-65B). In addition to their evaluation in few-shot settings, we explore the potential of open Large Language Models (Vicuna-13B) as synthetic data generator and propose a new workflow for this purpose. All evaluated models exhibited substantial improvements when fine-tuned on synthetic abstracts rather than the original noisy data. We provide our best performing (f1-score=59.0) BioGPT-Large model for end-to-end RE of natural-products relationships along with all the generated synthetic data and the evaluation dataset. See more details at https://github.com/idiap/abroad-re.
Dialogue Term Extraction using Transfer Learning and Topological Data Analysis
Goal oriented dialogue systems were originally designed as a natural language interface to a fixed data-set of entities that users might inquire about, further described by domain, slots, and values. As we move towards adaptable dialogue systems where knowledge about domains, slots, and values may change, there is an increasing need to automatically extract these terms from raw dialogues or related non-dialogue data on a large scale. In this paper, we take an important step in this direction by exploring different features that can enable systems to discover realizations of domains, slots, and values in dialogues in a purely data-driven fashion. The features that we examine stem from word embeddings, language modelling features, as well as topological features of the word embedding space. To examine the utility of each feature set, we train a seed model based on the widely used MultiWOZ data-set. Then, we apply this model to a different corpus, the Schema-Guided Dialogue data-set. Our method outperforms the previously proposed approach that relies solely on word embeddings. We also demonstrate that each of the features is responsible for discovering different kinds of content. We believe our results warrant further research towards ontology induction, and continued harnessing of topological data analysis for dialogue and natural language processing research.
Claim Extraction for Fact-Checking: Data, Models, and Automated Metrics
In this paper, we explore the problem of Claim Extraction using one-to-many text generation methods, comparing LLMs, small summarization models finetuned for the task, and a previous NER-centric baseline QACG. As the current publications on Claim Extraction, Fact Extraction, Claim Generation and Check-worthy Claim Detection are quite scattered in their means and terminology, we compile their common objectives, releasing the FEVERFact dataset, with 17K atomic factual claims extracted from 4K contextualised Wikipedia sentences, adapted from the original FEVER. We compile the known objectives into an Evaluation framework of: Atomicity, Fluency, Decontextualization, Faithfulness checked for each generated claim separately, and Focus and Coverage measured against the full set of predicted claims for a single input. For each metric, we implement a scale using a reduction to an already-explored NLP task. We validate our metrics against human grading of generic claims, to see that the model ranking on F_{fact}, our hardest metric, did not change and the evaluation framework approximates human grading very closely in terms of F_1 and RMSE.
PHLoRA: data-free Post-hoc Low-Rank Adapter extraction from full-rank checkpoint
We introduce PHLoRA (Pronounced "flora"). (Post-hoc LoRA), a simple yet powerful method to extract low-rank adaptation adapters from full-rank fine-tuned models without requiring access to training data or gradients. By computing the low-rank decomposition of weight differences between a base model and its fine-tuned counterpart, our method reconstructs adapter modules that can be merged or dynamically routed at inference time via S-LoRA, or served in scalable, industry settings using platforms like NVIDIA NIM. This approach amortizes latency overhead across requests and yields substantial cost savings. Unlike prior work that trains each adapter explicitly, our approach decouples fine-tuning from adapter generation, allowing adapter extraction from existing full-rank models or third-party checkpoints. Experiments on text, image, and video benchmarks using the Amazon Nova model family demonstrate that extracted adapters preserve high energy from the full weight delta, can be pruned safely, and yield negligible degradation in downstream task performance when re-merged. Overall, PHLoRA provides a practical path for making all existing full-rank checkpoints adapter-ready, democratizing scalable inference for all models.
Controlling the Extraction of Memorized Data from Large Language Models via Prompt-Tuning
Large Language Models (LLMs) are known to memorize significant portions of their training data. Parts of this memorized content have been shown to be extractable by simply querying the model, which poses a privacy risk. We present a novel approach which uses prompt-tuning to control the extraction rates of memorized content in LLMs. We present two prompt training strategies to increase and decrease extraction rates, which correspond to an attack and a defense, respectively. We demonstrate the effectiveness of our techniques by using models from the GPT-Neo family on a public benchmark. For the 1.3B parameter GPT-Neo model, our attack yields a 9.3 percentage point increase in extraction rate compared to our baseline. Our defense can be tuned to achieve different privacy-utility trade-offs by a user-specified hyperparameter. We achieve an extraction rate reduction of up to 97.7% relative to our baseline, with a perplexity increase of 16.9%.
Synthetic Data for Blood Vessel Network Extraction
Blood vessel networks in the brain play a crucial role in stroke research, where understanding their topology is essential for analyzing blood flow dynamics. However, extracting detailed topological vessel network information from microscopy data remains a significant challenge, mainly due to the scarcity of labeled training data and the need for high topological accuracy. This work combines synthetic data generation with deep learning to automatically extract vessel networks as graphs from volumetric microscopy data. To combat data scarcity, we introduce a comprehensive pipeline for generating large-scale synthetic datasets that mirror the characteristics of real vessel networks. Our three-stage approach progresses from abstract graph generation through vessel mask creation to realistic medical image synthesis, incorporating biological constraints and imaging artifacts at each stage. Using this synthetic data, we develop a two-stage deep learning pipeline of 3D U-Net-based models for node detection and edge prediction. Fine-tuning on real microscopy data shows promising adaptation, improving edge prediction F1 scores from 0.496 to 0.626 by training on merely 5 manually labeled samples. These results suggest that automated vessel network extraction is becoming practically feasible, opening new possibilities for large-scale vascular analysis in stroke research.
GENIE: Generative Note Information Extraction model for structuring EHR data
Electronic Health Records (EHRs) hold immense potential for advancing healthcare, offering rich, longitudinal data that combines structured information with valuable insights from unstructured clinical notes. However, the unstructured nature of clinical text poses significant challenges for secondary applications. Traditional methods for structuring EHR free-text data, such as rule-based systems and multi-stage pipelines, are often limited by their time-consuming configurations and inability to adapt across clinical notes from diverse healthcare settings. Few systems provide a comprehensive attribute extraction for terminologies. While giant large language models (LLMs) like GPT-4 and LLaMA 405B excel at structuring tasks, they are slow, costly, and impractical for large-scale use. To overcome these limitations, we introduce GENIE, a Generative Note Information Extraction system that leverages LLMs to streamline the structuring of unstructured clinical text into usable data with standardized format. GENIE processes entire paragraphs in a single pass, extracting entities, assertion statuses, locations, modifiers, values, and purposes with high accuracy. Its unified, end-to-end approach simplifies workflows, reduces errors, and eliminates the need for extensive manual intervention. Using a robust data preparation pipeline and fine-tuned small scale LLMs, GENIE achieves competitive performance across multiple information extraction tasks, outperforming traditional tools like cTAKES and MetaMap and can handle extra attributes to be extracted. GENIE strongly enhances real-world applicability and scalability in healthcare systems. By open-sourcing the model and test data, we aim to encourage collaboration and drive further advancements in EHR structurization.
PromptRE: Weakly-Supervised Document-Level Relation Extraction via Prompting-Based Data Programming
Relation extraction aims to classify the relationships between two entities into pre-defined categories. While previous research has mainly focused on sentence-level relation extraction, recent studies have expanded the scope to document-level relation extraction. Traditional relation extraction methods heavily rely on human-annotated training data, which is time-consuming and labor-intensive. To mitigate the need for manual annotation, recent weakly-supervised approaches have been developed for sentence-level relation extraction while limited work has been done on document-level relation extraction. Weakly-supervised document-level relation extraction faces significant challenges due to an imbalanced number "no relation" instances and the failure of directly probing pretrained large language models for document relation extraction. To address these challenges, we propose PromptRE, a novel weakly-supervised document-level relation extraction method that combines prompting-based techniques with data programming. Furthermore, PromptRE incorporates the label distribution and entity types as prior knowledge to improve the performance. By leveraging the strengths of both prompting and data programming, PromptRE achieves improved performance in relation classification and effectively handles the "no relation" problem. Experimental results on ReDocRED, a benchmark dataset for document-level relation extraction, demonstrate the superiority of PromptRE over baseline approaches.
Semantic Information Extraction for Text Data with Probability Graph
In this paper, the problem of semantic information extraction for resource constrained text data transmission is studied. In the considered model, a sequence of text data need to be transmitted within a communication resource-constrained network, which only allows limited data transmission. Thus, at the transmitter, the original text data is extracted with natural language processing techniques. Then, the extracted semantic information is captured in a knowledge graph. An additional probability dimension is introduced in this graph to capture the importance of each information. This semantic information extraction problem is posed as an optimization framework whose goal is to extract most important semantic information for transmission. To find an optimal solution for this problem, a Floyd's algorithm based solution coupled with an efficient sorting mechanism is proposed. Numerical results testify the effectiveness of the proposed algorithm with regards to two novel performance metrics including semantic uncertainty and semantic similarity.
Comparing Feature Importance and Rule Extraction for Interpretability on Text Data
Complex machine learning algorithms are used more and more often in critical tasks involving text data, leading to the development of interpretability methods. Among local methods, two families have emerged: those computing importance scores for each feature and those extracting simple logical rules. In this paper we show that using different methods can lead to unexpectedly different explanations, even when applied to simple models for which we would expect qualitative coincidence. To quantify this effect, we propose a new approach to compare explanations produced by different methods.
Exploiting Asymmetry for Synthetic Training Data Generation: SynthIE and the Case of Information Extraction
Large language models (LLMs) show great potential for synthetic data generation. This work shows that useful data can be synthetically generated even for tasks that cannot be solved directly by the LLM: we show that, for problems with structured outputs, it is possible to prompt an LLM to perform the task in the opposite direction, to generate plausible text for the target structure. Leveraging the asymmetry in task difficulty makes it possible to produce large-scale, high-quality data for complex tasks. We demonstrate the effectiveness of this approach on closed information extraction, where collecting ground-truth data is challenging, and no satisfactory dataset exists to date. We synthetically generate a dataset of 1.8M data points, demonstrate its superior quality compared to existing datasets in a human evaluation and use it to finetune small models (220M and 770M parameters). The models we introduce, SynthIE, outperform existing baselines of comparable size with a substantial gap of 57 and 79 absolute points in micro and macro F1, respectively. Code, data, and models are available at https://github.com/epfl-dlab/SynthIE.
QUEACO: Borrowing Treasures from Weakly-labeled Behavior Data for Query Attribute Value Extraction
We study the problem of query attribute value extraction, which aims to identify named entities from user queries as diverse surface form attribute values and afterward transform them into formally canonical forms. Such a problem consists of two phases: {named entity recognition (NER)} and {attribute value normalization (AVN)}. However, existing works only focus on the NER phase but neglect equally important AVN. To bridge this gap, this paper proposes a unified query attribute value extraction system in e-commerce search named QUEACO, which involves both two phases. Moreover, by leveraging large-scale weakly-labeled behavior data, we further improve the extraction performance with less supervision cost. Specifically, for the NER phase, QUEACO adopts a novel teacher-student network, where a teacher network that is trained on the strongly-labeled data generates pseudo-labels to refine the weakly-labeled data for training a student network. Meanwhile, the teacher network can be dynamically adapted by the feedback of the student's performance on strongly-labeled data to maximally denoise the noisy supervisions from the weak labels. For the AVN phase, we also leverage the weakly-labeled query-to-attribute behavior data to normalize surface form attribute values from queries into canonical forms from products. Extensive experiments on a real-world large-scale E-commerce dataset demonstrate the effectiveness of QUEACO.
ChemScraper: Graphics Extraction, Molecular Diagram Parsing, and Annotated Data Generation for PDF Images
Existing visual parsers for molecule diagrams translate pixel-based raster images such as PNGs to chemical structure representations (e.g., SMILES). However, PDFs created by word processors including LaTeX and Word provide explicit locations and shapes for characters, lines, and polygons. We extract symbols from born-digital PDF molecule images and then apply simple graph transformations to capture both visual and chemical structure in editable ChemDraw files (CDXML). Our fast ( PDF rightarrow visual graph rightarrow chemical graph ) pipeline does not require GPUs, Optical Character Recognition (OCR) or vectorization. We evaluate on standard benchmarks using SMILES strings, along with a novel evaluation that provides graph-based metrics and error compilation using LgEval. The geometric information in born-digital PDFs produces a highly accurate parser, motivating generating training data for visual parsers that recognize from raster images, with extracted graphics, visual structure, and chemical structure as annotations. To do this we render SMILES strings in Indigo, parse molecule structure, and then validate recognized structure to select correct files.
PubTables-1M: Towards comprehensive table extraction from unstructured documents
Recently, significant progress has been made applying machine learning to the problem of table structure inference and extraction from unstructured documents. However, one of the greatest challenges remains the creation of datasets with complete, unambiguous ground truth at scale. To address this, we develop a new, more comprehensive dataset for table extraction, called PubTables-1M. PubTables-1M contains nearly one million tables from scientific articles, supports multiple input modalities, and contains detailed header and location information for table structures, making it useful for a wide variety of modeling approaches. It also addresses a significant source of ground truth inconsistency observed in prior datasets called oversegmentation, using a novel canonicalization procedure. We demonstrate that these improvements lead to a significant increase in training performance and a more reliable estimate of model performance at evaluation for table structure recognition. Further, we show that transformer-based object detection models trained on PubTables-1M produce excellent results for all three tasks of detection, structure recognition, and functional analysis without the need for any special customization for these tasks. Data and code will be released at https://github.com/microsoft/table-transformer.
Capture the Flag: Uncovering Data Insights with Large Language Models
The extraction of a small number of relevant insights from vast amounts of data is a crucial component of data-driven decision-making. However, accomplishing this task requires considerable technical skills, domain expertise, and human labor. This study explores the potential of using Large Language Models (LLMs) to automate the discovery of insights in data, leveraging recent advances in reasoning and code generation techniques. We propose a new evaluation methodology based on a "capture the flag" principle, measuring the ability of such models to recognize meaningful and pertinent information (flags) in a dataset. We further propose two proof-of-concept agents, with different inner workings, and compare their ability to capture such flags in a real-world sales dataset. While the work reported here is preliminary, our results are sufficiently interesting to mandate future exploration by the community.
Object Dimension Extraction for Environment Mapping with Low Cost Cameras Fused with Laser Ranging
It is essential to have a method to map an unknown terrain for various applications. For places where human access is not possible, a method should be proposed to identify the environment. Exploration, disaster relief, transportation and many other purposes would be convenient if a map of the environment is available. Replicating the human vision system using stereo cameras would be an optimum solution. In this work, we have used laser ranging based technique fused with stereo cameras to extract dimension of objects for mapping. The distortions were calibrated using mathematical model of the camera. By means of Semi Global Block Matching [1] disparity map was generated and reduces the noise using novel noise reduction method of disparity map by dilation. The Data from the Laser Range Finder (LRF) and noise reduced vision data has been used to identify the object parameters.
Automatic Metadata Extraction Incorporating Visual Features from Scanned Electronic Theses and Dissertations
Electronic Theses and Dissertations (ETDs) contain domain knowledge that can be used for many digital library tasks, such as analyzing citation networks and predicting research trends. Automatic metadata extraction is important to build scalable digital library search engines. Most existing methods are designed for born-digital documents, so they often fail to extract metadata from scanned documents such as for ETDs. Traditional sequence tagging methods mainly rely on text-based features. In this paper, we propose a conditional random field (CRF) model that combines text-based and visual features. To verify the robustness of our model, we extended an existing corpus and created a new ground truth corpus consisting of 500 ETD cover pages with human validated metadata. Our experiments show that CRF with visual features outperformed both a heuristic and a CRF model with only text-based features. The proposed model achieved 81.3%-96% F1 measure on seven metadata fields. The data and source code are publicly available on Google Drive (https://tinyurl.com/y8kxzwrp) and a GitHub repository (https://github.com/lamps-lab/ETDMiner/tree/master/etd_crf), respectively.
Weakly supervised information extraction from inscrutable handwritten document images
State-of-the-art information extraction methods are limited by OCR errors. They work well for printed text in form-like documents, but unstructured, handwritten documents still remain a challenge. Adapting existing models to domain-specific training data is quite expensive, because of two factors, 1) limited availability of the domain-specific documents (such as handwritten prescriptions, lab notes, etc.), and 2) annotations become even more challenging as one needs domain-specific knowledge to decode inscrutable handwritten document images. In this work, we focus on the complex problem of extracting medicine names from handwritten prescriptions using only weakly labeled data. The data consists of images along with the list of medicine names in it, but not their location in the image. We solve the problem by first identifying the regions of interest, i.e., medicine lines from just weak labels and then injecting a domain-specific medicine language model learned using only synthetically generated data. Compared to off-the-shelf state-of-the-art methods, our approach performs >2.5x better in medicine names extraction from prescriptions.
ObjexMT: Objective Extraction and Metacognitive Calibration for LLM-as-a-Judge under Multi-Turn Jailbreaks
LLM-as-a-Judge (LLMaaJ) now underpins scalable evaluation, yet we lack a decisive test of a judge's qualification: can it recover a conversation's latent objective and know when that inference is trustworthy? LLMs degrade under irrelevant or long context; multi-turn jailbreaks further hide goals across turns. We introduce ObjexMT, a benchmark for objective extraction and metacognition. Given a multi-turn transcript, a model must return a one-sentence base objective and a self-reported confidence. Accuracy is computed via LLM-judge semantic similarity to gold objectives, converted to binary correctness by a single human-aligned threshold calibrated once on N = 100 items (tau^*=0.61). Metacognition is evaluated with ECE, Brier, Wrong-at-High-Conf, and risk-coverage. Across gpt-4.1, claude-sonnet-4, and Qwen3-235B-A22B-FP8 on SafeMTData_Attack600, SafeMTData_1K, MHJ, and CoSafe, claude-sonnet-4 attains the best objective-extraction accuracy (0.515) and calibration (ECE 0.296; Brier 0.324); gpt-4.1 and Qwen3-235B-A22B-FP8 tie at 0.441 but are overconfident (mean confidence approx0.88 vs. accuracy approx0.44; Wrong-at-0.90 approx48-52%). Performance varies by dataset (approx0.167-0.865). ObjexMT thus supplies an actionable test for LLM judges: when objectives are not explicit, judges often misinfer them with high confidence. We recommend exposing objectives when feasible and gating decisions by confidence otherwise. Code and data at https://github.com/hyunjun1121/ObjexMT_dataset.
CTE: A Dataset for Contextualized Table Extraction
Relevant information in documents is often summarized in tables, helping the reader to identify useful facts. Most benchmark datasets support either document layout analysis or table understanding, but lack in providing data to apply both tasks in a unified way. We define the task of Contextualized Table Extraction (CTE), which aims to extract and define the structure of tables considering the textual context of the document. The dataset comprises 75k fully annotated pages of scientific papers, including more than 35k tables. Data are gathered from PubMed Central, merging the information provided by annotations in the PubTables-1M and PubLayNet datasets. The dataset can support CTE and adds new classes to the original ones. The generated annotations can be used to develop end-to-end pipelines for various tasks, including document layout analysis, table detection, structure recognition, and functional analysis. We formally define CTE and evaluation metrics, showing which subtasks can be tackled, describing advantages, limitations, and future works of this collection of data. Annotations and code will be accessible a https://github.com/AILab-UniFI/cte-dataset.
Diagnosis extraction from unstructured Dutch echocardiogram reports using span- and document-level characteristic classification
Clinical machine learning research and AI driven clinical decision support models rely on clinically accurate labels. Manually extracting these labels with the help of clinical specialists is often time-consuming and expensive. This study tests the feasibility of automatic span- and document-level diagnosis extraction from unstructured Dutch echocardiogram reports. We included 115,692 unstructured echocardiogram reports from the UMCU a large university hospital in the Netherlands. A randomly selected subset was manually annotated for the occurrence and severity of eleven commonly described cardiac characteristics. We developed and tested several automatic labelling techniques at both span and document levels, using weighted and macro F1-score, precision, and recall for performance evaluation. We compared the performance of span labelling against document labelling methods, which included both direct document classifiers and indirect document classifiers that rely on span classification results. The SpanCategorizer and MedRoBERTa.nl models outperformed all other span and document classifiers, respectively. The weighted F1-score varied between characteristics, ranging from 0.60 to 0.93 in SpanCategorizer and 0.96 to 0.98 in MedRoBERTa.nl. Direct document classification was superior to indirect document classification using span classifiers. SetFit achieved competitive document classification performance using only 10\% of the training data. Utilizing a reduced label set yielded near-perfect document classification results. We recommend using our published SpanCategorizer and MedRoBERTa.nl models for span- and document-level diagnosis extraction from Dutch echocardiography reports. For settings with limited training data, SetFit may be a promising alternative for document classification.
Reliable End-to-End Material Information Extraction from the Literature with Source-Tracked Multi-Stage Large Language Models
Data-driven materials discovery requires large-scale experimental datasets, yet most of the information remains trapped in unstructured literature. Existing extraction efforts often focus on a limited set of features and have not addressed the integrated composition-processing-microstructure-property relationships essential for understanding materials behavior, thereby posing challenges for building comprehensive databases. To address this gap, we propose a multi-stage information extraction pipeline powered by large language models, which captures 47 features spanning composition, processing, microstructure, and properties exclusively from experimentally reported materials. The pipeline integrates iterative extraction with source tracking to enhance both accuracy and reliability. Evaluations at the feature level (independent attributes) and tuple level (interdependent features) yielded F1 scores around 0.96. Compared with single-pass extraction without source tracking, our approach improved F1 scores of microstructure category by 10.0% (feature level) and 13.7% (tuple level), and reduced missed materials from 49 to 13 out of 396 materials in 100 articles on precipitate-containing multi-principal element alloys (miss rate reduced from 12.4% to 3.3%). The pipeline enables scalable and efficient literature mining, producing databases with high precision, minimal omissions, and zero false positives. These datasets provide trustworthy inputs for machine learning and materials informatics, while the modular design generalizes to diverse material classes, enabling comprehensive materials information extraction.
GFTE: Graph-based Financial Table Extraction
Tabular data is a crucial form of information expression, which can organize data in a standard structure for easy information retrieval and comparison. However, in financial industry and many other fields tables are often disclosed in unstructured digital files, e.g. Portable Document Format (PDF) and images, which are difficult to be extracted directly. In this paper, to facilitate deep learning based table extraction from unstructured digital files, we publish a standard Chinese dataset named FinTab, which contains more than 1,600 financial tables of diverse kinds and their corresponding structure representation in JSON. In addition, we propose a novel graph-based convolutional neural network model named GFTE as a baseline for future comparison. GFTE integrates image feature, position feature and textual feature together for precise edge prediction and reaches overall good results.
Supervised Topical Key Phrase Extraction of News Stories using Crowdsourcing, Light Filtering and Co-reference Normalization
Fast and effective automated indexing is critical for search and personalized services. Key phrases that consist of one or more words and represent the main concepts of the document are often used for the purpose of indexing. In this paper, we investigate the use of additional semantic features and pre-processing steps to improve automatic key phrase extraction. These features include the use of signal words and freebase categories. Some of these features lead to significant improvements in the accuracy of the results. We also experimented with 2 forms of document pre-processing that we call light filtering and co-reference normalization. Light filtering removes sentences from the document, which are judged peripheral to its main content. Co-reference normalization unifies several written forms of the same named entity into a unique form. We also needed a "Gold Standard" - a set of labeled documents for training and evaluation. While the subjective nature of key phrase selection precludes a true "Gold Standard", we used Amazon's Mechanical Turk service to obtain a useful approximation. Our data indicates that the biggest improvements in performance were due to shallow semantic features, news categories, and rhetorical signals (nDCG 78.47% vs. 68.93%). The inclusion of deeper semantic features such as Freebase sub-categories was not beneficial by itself, but in combination with pre-processing, did cause slight improvements in the nDCG scores.
