- An Exploration of Default Images in Text-to-Image Generation In the creative practice of text-to-image (TTI) generation, images are synthesized from textual prompts. By design, TTI models always yield an output, even if the prompt contains unknown terms. In this case, the model may generate default images: images that closely resemble each other across many unrelated prompts. Studying default images is valuable for designing better solutions for prompt engineering and TTI generation. We present the first investigation into default images on Midjourney. We describe an initial study in which we manually created input prompts triggering default images, and several ablation studies. Building on these, we conduct a computational analysis of over 750,000 images, revealing consistent default images across unrelated prompts. We also conduct an online user study investigating how default images may affect user satisfaction. Our work lays the foundation for understanding default images in TTI generation, highlighting their practical relevance as well as challenges and future research directions. 5 authors · May 14, 2025
11 The Assistant Axis: Situating and Stabilizing the Default Persona of Language Models Large language models can represent a variety of personas but typically default to a helpful Assistant identity cultivated during post-training. We investigate the structure of the space of model personas by extracting activation directions corresponding to diverse character archetypes. Across several different models, we find that the leading component of this persona space is an "Assistant Axis," which captures the extent to which a model is operating in its default Assistant mode. Steering towards the Assistant direction reinforces helpful and harmless behavior; steering away increases the model's tendency to identify as other entities. Moreover, steering away with more extreme values often induces a mystical, theatrical speaking style. We find this axis is also present in pre-trained models, where it primarily promotes helpful human archetypes like consultants and coaches and inhibits spiritual ones. Measuring deviations along the Assistant Axis predicts "persona drift," a phenomenon where models slip into exhibiting harmful or bizarre behaviors that are uncharacteristic of their typical persona. We find that persona drift is often driven by conversations demanding meta-reflection on the model's processes or featuring emotionally vulnerable users. We show that restricting activations to a fixed region along the Assistant Axis can stabilize model behavior in these scenarios -- and also in the face of adversarial persona-based jailbreaks. Our results suggest that post-training steers models toward a particular region of persona space but only loosely tethers them to it, motivating work on training and steering strategies that more deeply anchor models to a coherent persona. 5 authors · Jan 15 2
- A Spatio-Temporal Machine Learning Model for Mortgage Credit Risk: Default Probabilities and Loan Portfolios We introduce a novel machine learning model for credit risk by combining tree-boosting with a latent spatio-temporal Gaussian process model accounting for frailty correlation. This allows for modeling non-linearities and interactions among predictor variables in a flexible data-driven manner and for accounting for spatio-temporal variation that is not explained by observable predictor variables. We also show how estimation and prediction can be done in a computationally efficient manner. In an application to a large U.S. mortgage credit risk data set, we find that both predictive default probabilities for individual loans and predictive loan portfolio loss distributions obtained with our novel approach are more accurate compared to conventional independent linear hazard models and also linear spatio-temporal models. Using interpretability tools for machine learning models, we find that the likely reasons for this outperformance are strong interaction and non-linear effects in the predictor variables and the presence of large spatio-temporal frailty effects. 2 authors · Oct 3, 2024