new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 18

Pulp Motion: Framing-aware multimodal camera and human motion generation

Treating human motion and camera trajectory generation separately overlooks a core principle of cinematography: the tight interplay between actor performance and camera work in the screen space. In this paper, we are the first to cast this task as a text-conditioned joint generation, aiming to maintain consistent on-screen framing while producing two heterogeneous, yet intrinsically linked, modalities: human motion and camera trajectories. We propose a simple, model-agnostic framework that enforces multimodal coherence via an auxiliary modality: the on-screen framing induced by projecting human joints onto the camera. This on-screen framing provides a natural and effective bridge between modalities, promoting consistency and leading to more precise joint distribution. We first design a joint autoencoder that learns a shared latent space, together with a lightweight linear transform from the human and camera latents to a framing latent. We then introduce auxiliary sampling, which exploits this linear transform to steer generation toward a coherent framing modality. To support this task, we also introduce the PulpMotion dataset, a human-motion and camera-trajectory dataset with rich captions, and high-quality human motions. Extensive experiments across DiT- and MAR-based architectures show the generality and effectiveness of our method in generating on-frame coherent human-camera motions, while also achieving gains on textual alignment for both modalities. Our qualitative results yield more cinematographically meaningful framings setting the new state of the art for this task. Code, models and data are available in our https://www.lix.polytechnique.fr/vista/projects/2025_pulpmotion_courant/{project page}.

  • 5 authors
·
Oct 6, 2025

FrameRef: A Framing Dataset and Simulation Testbed for Modeling Bounded Rational Information Health

Information ecosystems increasingly shape how people internalize exposure to adverse digital experiences, raising concerns about the long-term consequences for information health. In modern search and recommendation systems, ranking and personalization policies play a central role in shaping such exposure and its long-term effects on users. To study these effects in a controlled setting, we present FrameRef, a large-scale dataset of 1,073,740 systematically reframed claims across five framing dimensions: authoritative, consensus, emotional, prestige, and sensationalist, and propose a simulation-based framework for modeling sequential information exposure and reinforcement dynamics characteristic of ranking and recommendation systems. Within this framework, we construct framing-sensitive agent personas by fine-tuning language models with framing-conditioned loss attenuation, inducing targeted biases while preserving overall task competence. Using Monte Carlo trajectory sampling, we show that small, systematic shifts in acceptance and confidence can compound over time, producing substantial divergence in cumulative information health trajectories. Human evaluation further confirms that FrameRef's generated framings measurably affect human judgment. Together, our dataset and framework provide a foundation for systematic information health research through simulation, complementing and informing responsible human-centered research. We release FrameRef, code, documentation, human evaluation data, and persona adapter models at https://github.com/infosenselab/frameref.

  • 3 authors
·
Feb 16