Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSERN: Simulation-Enhanced Realistic Navigation for Multi-Agent Robotic Systems in Contested Environments
The increasing deployment of autonomous systems in complex environments necessitates efficient communication and task completion among multiple agents. This paper presents SERN (Simulation-Enhanced Realistic Navigation), a novel framework integrating virtual and physical environments for real-time collaborative decision-making in multi-robot systems. SERN addresses key challenges in asset deployment and coordination through our bi-directional SERN ROS Bridge communication framework. Our approach advances the SOTA through: accurate real-world representation in virtual environments using Unity high-fidelity simulator; synchronization of physical and virtual robot movements; efficient ROS data distribution between remote locations; and integration of SOTA semantic segmentation for enhanced environmental perception. Additionally, we introduce a Multi-Metric Cost Function (MMCF) that dynamically balances latency, reliability, computational overhead, and bandwidth consumption to optimize system performance in contested environments. We further provide theoretical justification for synchronization accuracy by proving that the positional error between physical and virtual robots remains bounded under varying network conditions. Our evaluations show a 15% to 24% improvement in latency and up to a 15% increase in processing efficiency compared to traditional ROS setups. Real-world and virtual simulation experiments with multiple robots (Clearpath Jackal and Husky) demonstrate synchronization accuracy, achieving less than 5 cm positional error and under 2^circ rotational error. These results highlight SERN's potential to enhance situational awareness and multi-agent coordination in diverse, contested environments.
UnQovering Stereotyping Biases via Underspecified Questions
While language embeddings have been shown to have stereotyping biases, how these biases affect downstream question answering (QA) models remains unexplored. We present UNQOVER, a general framework to probe and quantify biases through underspecified questions. We show that a naive use of model scores can lead to incorrect bias estimates due to two forms of reasoning errors: positional dependence and question independence. We design a formalism that isolates the aforementioned errors. As case studies, we use this metric to analyze four important classes of stereotypes: gender, nationality, ethnicity, and religion. We probe five transformer-based QA models trained on two QA datasets, along with their underlying language models. Our broad study reveals that (1) all these models, with and without fine-tuning, have notable stereotyping biases in these classes; (2) larger models often have higher bias; and (3) the effect of fine-tuning on bias varies strongly with the dataset and the model size.
UWB TDoA Error Correction using Transformers: Patching and Positional Encoding Strategies
Despite their high accuracy, UWB-based localization systems suffer inaccuracies when deployed in industrial locations with many obstacles due to multipath effects and non-line-of-sight (NLOS) conditions. In such environments, current error mitigation approaches for time difference of arrival (TDoA) localization typically exclude NLOS links. However, this exclusion approach leads to geometric dilution of precision problems and this approach is infeasible when the majority of links are NLOS. To address these limitations, we propose a transformer-based TDoA position correction method that uses raw channel impulse responses (CIRs) from all available anchor nodes to compute position corrections. We introduce different CIR ordering, patching and positional encoding strategies for the transformer, and analyze each proposed technique's scalability and performance gains. Based on experiments on real-world UWB measurements, our approach can provide accuracies of up to 0.39 m in a complex environment consisting of (almost) only NLOS signals, which is an improvement of 73.6 % compared to the TDoA baseline.
Cuff-less Arterial Blood Pressure Waveform Synthesis from Single-site PPG using Transformer & Frequency-domain Learning
We propose two novel purpose-built deep learning (DL) models for synthesis of the arterial blood pressure (ABP) waveform in a cuff-less manner, using a single-site photoplethysmography (PPG) signal. We utilize the public UCI dataset on cuff-less blood pressure (CLBP) estimation to train and evaluate our DL models. Firstly, we implement a transformer model that incorporates positional encoding, multi-head attention, layer normalization, and dropout techniques, and synthesizes the ABP waveform with a mean absolute error (MAE) of 14. Secondly, we implement a frequency-domain (FD) learning approach where we first obtain the discrete cosine transform (DCT) coefficients of the PPG and ABP signals corresponding to two cardiac cycles, and then learn a linear/non-linear (L/NL) regression between them. We learn that the FD L/NL regression model outperforms the transformer model by achieving an MAE of 11.87 and 8.01, for diastolic blood pressure (DBP) and systolic blood pressure (SBP), respectively. Our FD L/NL regression model also fulfills the AAMI criterion of utilizing data from more than 85 subjects, and achieves grade B by the BHS criterion.
CLONE: Closed-Loop Whole-Body Humanoid Teleoperation for Long-Horizon Tasks
Humanoid teleoperation plays a vital role in demonstrating and collecting data for complex humanoid-scene interactions. However, current teleoperation systems face critical limitations: they decouple upper- and lower-body control to maintain stability, restricting natural coordination, and operate open-loop without real-time position feedback, leading to accumulated drift. The fundamental challenge is achieving precise, coordinated whole-body teleoperation over extended durations while maintaining accurate global positioning. Here we show that an MoE-based teleoperation system, CLONE, with closed-loop error correction enables unprecedented whole-body teleoperation fidelity, maintaining minimal positional drift over long-range trajectories using only head and hand tracking from an MR headset. Unlike previous methods that either sacrifice coordination for stability or suffer from unbounded drift, CLONE learns diverse motion skills while preventing tracking error accumulation through real-time feedback, enabling complex coordinated movements such as ``picking up objects from the ground.'' These results establish a new milestone for whole-body humanoid teleoperation for long-horizon humanoid-scene interaction tasks.
EMDB: The Electromagnetic Database of Global 3D Human Pose and Shape in the Wild
We present EMDB, the Electromagnetic Database of Global 3D Human Pose and Shape in the Wild. EMDB is a novel dataset that contains high-quality 3D SMPL pose and shape parameters with global body and camera trajectories for in-the-wild videos. We use body-worn, wireless electromagnetic (EM) sensors and a hand-held iPhone to record a total of 58 minutes of motion data, distributed over 81 indoor and outdoor sequences and 10 participants. Together with accurate body poses and shapes, we also provide global camera poses and body root trajectories. To construct EMDB, we propose a multi-stage optimization procedure, which first fits SMPL to the 6-DoF EM measurements and then refines the poses via image observations. To achieve high-quality results, we leverage a neural implicit avatar model to reconstruct detailed human surface geometry and appearance, which allows for improved alignment and smoothness via a dense pixel-level objective. Our evaluations, conducted with a multi-view volumetric capture system, indicate that EMDB has an expected accuracy of 2.3 cm positional and 10.6 degrees angular error, surpassing the accuracy of previous in-the-wild datasets. We evaluate existing state-of-the-art monocular RGB methods for camera-relative and global pose estimation on EMDB. EMDB is publicly available under https://ait.ethz.ch/emdb
JoyAvatar: Real-time and Infinite Audio-Driven Avatar Generation with Autoregressive Diffusion
Existing DiT-based audio-driven avatar generation methods have achieved considerable progress, yet their broader application is constrained by limitations such as high computational overhead and the inability to synthesize long-duration videos. Autoregressive methods address this problem by applying block-wise autoregressive diffusion methods. However, these methods suffer from the problem of error accumulation and quality degradation. To address this, we propose JoyAvatar, an audio-driven autoregressive model capable of real-time inference and infinite-length video generation with the following contributions: (1) Progressive Step Bootstrapping (PSB), which allocates more denoising steps to initial frames to stabilize generation and reduce error accumulation; (2) Motion Condition Injection (MCI), enhancing temporal coherence by injecting noise-corrupted previous frames as motion condition; and (3) Unbounded RoPE via Cache-Resetting (URCR), enabling infinite-length generation through dynamic positional encoding. Our 1.3B-parameter causal model achieves 16 FPS on a single GPU and achieves competitive results in visual quality, temporal consistency, and lip synchronization.
UniQL: Unified Quantization and Low-rank Compression for Adaptive Edge LLMs
Deploying large language model (LLM) models on mobile platforms faces significant challenges due to the limited memory and shared computational resources of the device. Resource availability may be an issue as it is directly impacted by the current device workload, adding to the uncertainty of model deployment. We introduce UniQL, a unified post-training quantization and low-rank compression framework with on-device configurable pruning rates for edge LLMs. UniQL is a general framework that integrates quantization and low-rank compression for Transformers, State Space Models (SSMs), and hybrid models to support diverse edge applications. In our proposed joint framework, we introduce an efficient structured weight-sorting method that speeds up computation by 20x, quantization-aware singular value decomposition (SVD) to minimize quantization errors, state-aware weight sorting for SSMs, and a fused rotary positional embedding (RoPE) kernel for pruned models. Our framework performs weight-sorting, fine-tuning, and quantization in the cloud in a single-pass workflow, while enabling on-device configurable pruning rates up to 35%. Our experiments show that quantized and pruned models achieve a memory reduction of 4x-5.7x and a token-throughput improvement of 2.7x-3.4x, maintaining accuracy within 5% of the original models at 15% pruning across Transformers (Llama3 and Qwen2.5), SSMs (Mamba2), and hybrid models (Nemotron-H and Bamba-v2). The code and quantized models are available at: https://github.com/enyac-group/UniQL.
Position Bias Mitigates Position Bias:Mitigate Position Bias Through Inter-Position Knowledge Distillation
Positional bias (PB), manifesting as non-uniform sensitivity across different contextual locations, significantly impairs long-context comprehension and processing capabilities. While prior work seeks to mitigate PB through modifying the architectures causing its emergence, significant PB still persists. To address PB effectively, we introduce Pos2Distill, a position to position knowledge distillation framework. Pos2Distill transfers the superior capabilities from advantageous positions to less favorable ones, thereby reducing the huge performance gaps. The conceptual principle is to leverage the inherent, position-induced disparity to counteract the PB itself. We identify distinct manifestations of PB under \textsc{r}etrieval and \textsc{r}easoning paradigms, thereby designing two specialized instantiations: Pos2Distill-R\textsuperscript{1} and Pos2Distill-R\textsuperscript{2} respectively, both grounded in this core principle. By employing the Pos2Distill approach, we achieve enhanced uniformity and significant performance gains across all contextual positions in long-context retrieval and reasoning tasks. Crucially, both specialized systems exhibit strong cross-task generalization mutually, while achieving superior performance on their respective tasks.
Position-Aware Parameter Efficient Fine-Tuning Approach for Reducing Positional Bias in LLMs
Recent advances in large language models (LLMs) have enhanced their ability to process long input contexts. This development is particularly crucial for tasks that involve retrieving knowledge from an external datastore, which can result in long inputs. However, recent studies show a positional bias in LLMs, demonstrating varying performance depending on the location of useful information within the input sequence. In this study, we conduct extensive experiments to investigate the root causes of positional bias. Our findings indicate that the primary contributor to LLM positional bias stems from the inherent positional preferences of different models. We demonstrate that merely employing prompt-based solutions is inadequate for overcoming the positional preferences. To address this positional bias issue of a pre-trained LLM, we developed a Position-Aware Parameter Efficient Fine-Tuning (PAPEFT) approach which is composed of a data augmentation technique and a parameter efficient adapter, enhancing a uniform attention distribution across the input context. Our experiments demonstrate that the proposed approach effectively reduces positional bias, improving LLMs' effectiveness in handling long context sequences for various tasks that require externally retrieved knowledge.
NLP Evaluation in trouble: On the Need to Measure LLM Data Contamination for each Benchmark
In this position paper, we argue that the classical evaluation on Natural Language Processing (NLP) tasks using annotated benchmarks is in trouble. The worst kind of data contamination happens when a Large Language Model (LLM) is trained on the test split of a benchmark, and then evaluated in the same benchmark. The extent of the problem is unknown, as it is not straightforward to measure. Contamination causes an overestimation of the performance of a contaminated model in a target benchmark and associated task with respect to their non-contaminated counterparts. The consequences can be very harmful, with wrong scientific conclusions being published while other correct ones are discarded. This position paper defines different levels of data contamination and argues for a community effort, including the development of automatic and semi-automatic measures to detect when data from a benchmark was exposed to a model, and suggestions for flagging papers with conclusions that are compromised by data contamination.
Position of Uncertainty: A Cross-Linguistic Study of Positional Bias in Large Language Models
Large language models exhibit positional bias -- systematic neglect of information at specific context positions -- yet its interplay with linguistic diversity remains poorly understood. We present a cross-linguistic study across five typologically distinct languages (English, Russian, German, Hindi, Vietnamese), examining how positional bias interacts with model uncertainty, syntax, and prompting. Key findings: (1) Positional bias is model-driven, with language-specific variations -- Qwen2.5-7B favors late positions, challenging assumptions of early-token bias; (2) Explicit positional guidance (e.g., correct context is at position X) reduces accuracy across languages, undermining prompt-engineering practices; (3) Aligning context with positional bias increases entropy, yet minimal entropy does not predict accuracy. (4) We further uncover that LLMs differently impose dominant word order in free-word-order languages like Hindi.
Vision-Based Terrain Relative Navigation on High-Altitude Balloon and Sub-Orbital Rocket
We present an experimental analysis on the use of a camera-based approach for high-altitude navigation by associating mapped landmarks from a satellite image database to camera images, and by leveraging inertial sensors between camera frames. We evaluate performance of both a sideways-tilted and downward-facing camera on data collected from a World View Enterprises high-altitude balloon with data beginning at an altitude of 33 km and descending to near ground level (4.5 km) with 1.5 hours of flight time. We demonstrate less than 290 meters of average position error over a trajectory of more than 150 kilometers. In addition to showing performance across a range of altitudes, we also demonstrate the robustness of the Terrain Relative Navigation (TRN) method to rapid rotations of the balloon, in some cases exceeding 20 degrees per second, and to camera obstructions caused by both cloud coverage and cords swaying underneath the balloon. Additionally, we evaluate performance on data collected by two cameras inside the capsule of Blue Origin's New Shepard rocket on payload flight NS-23, traveling at speeds up to 880 km/hr, and demonstrate less than 55 meters of average position error.
Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake Analysis
The rapid development of large language models (LLMs) has not only provided numerous opportunities but also presented significant challenges. This becomes particularly evident when LLMs inadvertently generate harmful or toxic content, either unintentionally or because of intentional inducement. Existing alignment methods usually direct LLMs toward the favorable outcomes by utilizing human-annotated, flawless instruction-response pairs. Conversely, this study proposes a novel alignment technique based on mistake analysis, which deliberately exposes LLMs to erroneous content to learn the reasons for mistakes and how to avoid them. In this case, mistakes are repurposed into valuable data for alignment, effectively helping to avoid the production of erroneous responses. Without external models or human annotations, our method leverages a model's intrinsic ability to discern undesirable mistakes and improves the safety of its generated responses. Experimental results reveal that our method outperforms existing alignment approaches in enhancing model safety while maintaining the overall utility.
Mitigate Position Bias in Large Language Models via Scaling a Single Dimension
Large Language Models (LLMs) are increasingly applied in various real-world scenarios due to their excellent generalization capabilities and robust generative abilities. However, they exhibit position bias, also known as "lost in the middle", a phenomenon that is especially pronounced in long-context scenarios, which indicates the placement of the key information in different positions of a prompt can significantly affect accuracy. This paper first explores the micro-level manifestations of position bias, concluding that attention weights are a micro-level expression of position bias. It further identifies that, in addition to position embeddings, causal attention mask also contributes to position bias by creating position-specific hidden states. Based on these insights, we propose a method to mitigate position bias by scaling this positional hidden states. Experiments on the NaturalQuestions Multi-document QA, KV retrieval, LongBench and timeline reorder tasks, using various models including RoPE models, context windowextended models, and Alibi models, demonstrate the effectiveness and generalizability of our approach. Our method can improve performance by up to 15.2% by modifying just one dimension of hidden states. Our code is available at https://aka.ms/PositionalHidden.
PositionID: LLMs can Control Lengths, Copy and Paste with Explicit Positional Awareness
Large Language Models (LLMs) demonstrate impressive capabilities across various domains, including role-playing, creative writing, mathematical reasoning, and coding. Despite these advancements, LLMs still encounter challenges with length control, frequently failing to adhere to specific length constraints due to their token-level operations and insufficient training on data with strict length limitations. We identify this issue as stemming from a lack of positional awareness and propose novel approaches--PositionID Prompting and PositionID Fine-Tuning--to address it. These methods enhance the model's ability to continuously monitor and manage text length during generation. Additionally, we introduce PositionID CP Prompting to enable LLMs to perform copy and paste operations accurately. Furthermore, we develop two benchmarks for evaluating length control and copy-paste abilities. Our experiments demonstrate that our methods significantly improve the model's adherence to length constraints and copy-paste accuracy without compromising response quality.
Eliminating Position Bias of Language Models: A Mechanistic Approach
Position bias has proven to be a prevalent issue of modern language models (LMs), where the models prioritize content based on its position within the given context. This bias often leads to unexpected model failures and hurts performance, robustness, and reliability across various applications. Our mechanistic analysis attributes the position bias to two components employed in nearly all state-of-the-art LMs: causal attention and relative positional encodings. Specifically, we find that causal attention generally causes models to favor distant content, while relative positional encodings like RoPE prefer nearby ones based on the analysis of retrieval-augmented question answering (QA). Further, our empirical study on object detection reveals that position bias is also present in vision-language models (VLMs). Based on the above analyses, we propose to ELIMINATE position bias caused by different input segment orders (e.g., options in LM-as-a-judge, retrieved documents in QA) in a TRAINING-FREE ZERO-SHOT manner. Our method changes the causal attention to bidirectional attention between segments and utilizes model attention values to decide the relative orders of segments instead of using the order provided in input prompts, therefore enabling Position-INvariant inferencE (PINE) at the segment level. By eliminating position bias, models achieve better performance and reliability in downstream tasks where position bias widely exists, such as LM-as-a-judge and retrieval-augmented QA. Notably, PINE is especially useful when adapting LMs for evaluating reasoning pairs: it consistently provides 8 to 10 percentage points performance gains in most cases, and makes Llama-3-70B-Instruct perform even better than GPT-4-0125-preview on the RewardBench reasoning subset.
TRA: Better Length Generalisation with Threshold Relative Attention
Transformers struggle with length generalisation, displaying poor performance even on basic tasks. We test whether these limitations can be explained through two key failures of the self-attention mechanism. The first is the inability to fully remove irrelevant information. The second is tied to position, even if the dot product between a key and query is highly negative (i.e. an irrelevant key) learned positional biases may unintentionally up-weight such information - dangerous when distances become out of distribution. Put together, these two failure cases lead to compounding generalisation difficulties. We test whether they can be mitigated through the combination of a) selective sparsity - completely removing irrelevant keys from the attention softmax and b) contextualised relative distance - distance is only considered as between the query and the keys that matter. We show how refactoring the attention mechanism with these two mitigations in place can substantially improve generalisation capabilities of decoder only transformers.
Window Attention is Bugged: How not to Interpolate Position Embeddings
Window attention, position embeddings, and high resolution finetuning are core concepts in the modern transformer era of computer vision. However, we find that naively combining these near ubiquitous components can have a detrimental effect on performance. The issue is simple: interpolating position embeddings while using window attention is wrong. We study two state-of-the-art methods that have these three components, namely Hiera and ViTDet, and find that both do indeed suffer from this bug. To fix it, we introduce a simple absolute window position embedding strategy, which solves the bug outright in Hiera and allows us to increase both speed and performance of the model in ViTDet. We finally combine the two to obtain HieraDet, which achieves 61.7 box mAP on COCO, making it state-of-the-art for models that only use ImageNet-1k pretraining. This all stems from what is essentially a 3 line bug fix, which we name "absolute win".
SeqPE: Transformer with Sequential Position Encoding
Since self-attention layers in Transformers are permutation invariant by design, positional encodings must be explicitly incorporated to enable spatial understanding. However, fixed-size lookup tables used in traditional learnable position embeddings (PEs) limit extrapolation capabilities beyond pre-trained sequence lengths. Expert-designed methods such as ALiBi and RoPE, mitigate this limitation but demand extensive modifications for adapting to new modalities, underscoring fundamental challenges in adaptability and scalability. In this work, we present SeqPE, a unified and fully learnable position encoding framework that represents each n-dimensional position index as a symbolic sequence and employs a lightweight sequential position encoder to learn their embeddings in an end-to-end manner. To regularize SeqPE's embedding space, we introduce two complementary objectives: a contrastive objective that aligns embedding distances with a predefined position-distance function, and a knowledge distillation loss that anchors out-of-distribution position embeddings to in-distribution teacher representations, further enhancing extrapolation performance. Experiments across language modeling, long-context question answering, and 2D image classification demonstrate that SeqPE not only surpasses strong baselines in perplexity, exact match (EM), and accuracy--particularly under context length extrapolation--but also enables seamless generalization to multi-dimensional inputs without requiring manual architectural redesign. We release our code, data, and checkpoints at https://github.com/ghrua/seqpe.
Accurate a posteriori error evaluation in the reduced basis method
In the reduced basis method, the evaluation of the a posteriori estimator can become very sensitive to round-off errors. In this note, the origin of the loss of accuracy is revealed, and a solution to this problem is proposed and illustrated on a simple example.
The Impact of Positional Encoding on Length Generalization in Transformers
Length generalization, the ability to generalize from small training context sizes to larger ones, is a critical challenge in the development of Transformer-based language models. Positional encoding (PE) has been identified as a major factor influencing length generalization, but the exact impact of different PE schemes on extrapolation in downstream tasks remains unclear. In this paper, we conduct a systematic empirical study comparing the length generalization performance of decoder-only Transformers with five different position encoding approaches including Absolute Position Embedding (APE), T5's Relative PE, ALiBi, and Rotary, in addition to Transformers without positional encoding (NoPE). Our evaluation encompasses a battery of reasoning and mathematical tasks. Our findings reveal that the most commonly used positional encoding methods, such as ALiBi, Rotary, and APE, are not well suited for length generalization in downstream tasks. More importantly, NoPE outperforms other explicit positional encoding methods while requiring no additional computation. We theoretically demonstrate that NoPE can represent both absolute and relative PEs, but when trained with SGD, it mostly resembles T5's relative PE attention patterns. Finally, we find that scratchpad is not always helpful to solve length generalization and its format highly impacts the model's performance. Overall, our work suggests that explicit position embeddings are not essential for decoder-only Transformers to generalize well to longer sequences.
BLADE: Single-view Body Mesh Learning through Accurate Depth Estimation
Single-image human mesh recovery is a challenging task due to the ill-posed nature of simultaneous body shape, pose, and camera estimation. Existing estimators work well on images taken from afar, but they break down as the person moves close to the camera. Moreover, current methods fail to achieve both accurate 3D pose and 2D alignment at the same time. Error is mainly introduced by inaccurate perspective projection heuristically derived from orthographic parameters. To resolve this long-standing challenge, we present our method BLADE which accurately recovers perspective parameters from a single image without heuristic assumptions. We start from the inverse relationship between perspective distortion and the person's Z-translation Tz, and we show that Tz can be reliably estimated from the image. We then discuss the important role of Tz for accurate human mesh recovery estimated from close-range images. Finally, we show that, once Tz and the 3D human mesh are estimated, one can accurately recover the focal length and full 3D translation. Extensive experiments on standard benchmarks and real-world close-range images show that our method is the first to accurately recover projection parameters from a single image, and consequently attain state-of-the-art accuracy on 3D pose estimation and 2D alignment for a wide range of images. https://research.nvidia.com/labs/amri/projects/blade/
Unveiling The Mask of Position-Information Pattern Through the Mist of Image Features
Recent studies show that paddings in convolutional neural networks encode absolute position information which can negatively affect the model performance for certain tasks. However, existing metrics for quantifying the strength of positional information remain unreliable and frequently lead to erroneous results. To address this issue, we propose novel metrics for measuring (and visualizing) the encoded positional information. We formally define the encoded information as PPP (Position-information Pattern from Padding) and conduct a series of experiments to study its properties as well as its formation. The proposed metrics measure the presence of positional information more reliably than the existing metrics based on PosENet and a test in F-Conv. We also demonstrate that for any extant (and proposed) padding schemes, PPP is primarily a learning artifact and is less dependent on the characteristics of the underlying padding schemes.
Dwell in the Beginning: How Language Models Embed Long Documents for Dense Retrieval
This study investigates the existence of positional biases in Transformer-based models for text representation learning, particularly in the context of web document retrieval. We build on previous research that demonstrated loss of information in the middle of input sequences for causal language models, extending it to the domain of representation learning. We examine positional biases at various stages of training for an encoder-decoder model, including language model pre-training, contrastive pre-training, and contrastive fine-tuning. Experiments with the MS-MARCO document collection reveal that after contrastive pre-training the model already generates embeddings that better capture early contents of the input, with fine-tuning further aggravating this effect.
Tady: A Neural Disassembler without Structural Constraint Violations
Disassembly is a crucial yet challenging step in binary analysis. While emerging neural disassemblers show promise for efficiency and accuracy, they frequently generate outputs violating fundamental structural constraints, which significantly compromise their practical usability. To address this critical problem, we regularize the disassembly solution space by formalizing and applying key structural constraints based on post-dominance relations. This approach systematically detects widespread errors in existing neural disassemblers' outputs. These errors often originate from models' limited context modeling and instruction-level decoding that neglect global structural integrity. We introduce Tady, a novel neural disassembler featuring an improved model architecture and a dedicated post-processing algorithm, specifically engineered to address these deficiencies. Comprehensive evaluations on diverse binaries demonstrate that Tady effectively eliminates structural constraint violations and functions with high efficiency, while maintaining instruction-level accuracy.
Non-Uniform Spatial Alignment Errors in sUAS Imagery From Wide-Area Disasters
This work presents the first quantitative study of alignment errors between small uncrewed aerial systems (sUAS) geospatial imagery and a priori building polygons and finds that alignment errors are non-uniform and irregular. The work also introduces a publicly available dataset of imagery, building polygons, and human-generated and curated adjustments that can be used to evaluate existing strategies for aligning building polygons with sUAS imagery. There are no efforts that have aligned pre-existing spatial data with sUAS imagery, and thus, there is no clear state of practice. However, this effort and analysis show that the translational alignment errors present in this type of data, averaging 82px and an intersection over the union of 0.65, which would induce further errors and biases in downstream machine learning systems unless addressed. This study identifies and analyzes the translational alignment errors of 21,619 building polygons in fifty-one orthomosaic images, covering 16787.2 Acres (26.23 square miles), constructed from sUAS raw imagery from nine wide-area disasters (Hurricane Ian, Hurricane Harvey, Hurricane Michael, Hurricane Ida, Hurricane Idalia, Hurricane Laura, the Mayfield Tornado, the Musset Bayou Fire, and the Kilauea Eruption). The analysis finds no uniformity among the angle and distance metrics of the building polygon alignments as they present an average degree variance of 0.4 and an average pixel distance variance of 0.45. This work alerts the sUAS community to the problem of spatial alignment and that a simple linear transform, often used to align satellite imagery, will not be sufficient to align spatial data in sUAS orthomosaic imagery.
IterPref: Focal Preference Learning for Code Generation via Iterative Debugging
Preference learning enhances Code LLMs beyond supervised fine-tuning by leveraging relative quality comparisons. Existing methods construct preference pairs from candidates based on test case success, treating the higher pass rate sample as positive and the lower as negative. However, this approach does not pinpoint specific errors in the code, which prevents the model from learning more informative error correction patterns, as aligning failing code as a whole lacks the granularity needed to capture meaningful error-resolution relationships. To address these issues, we propose IterPref, a new preference alignment framework that mimics human iterative debugging to refine Code LLMs. IterPref explicitly locates error regions and aligns the corresponding tokens via a tailored DPO algorithm. To generate informative pairs, we introduce the CodeFlow dataset, where samples are iteratively refined until passing tests, with modifications capturing error corrections. Extensive experiments show that a diverse suite of Code LLMs equipped with IterPref achieves significant performance gains in code generation and improves on challenging tasks like BigCodeBench. In-depth analysis reveals that IterPref yields fewer errors. Our code and data will be made publicaly available.
Rethinking Addressing in Language Models via Contexualized Equivariant Positional Encoding
Transformers rely on both content-based and position-based addressing mechanisms to make predictions, but existing positional encoding techniques often diminish the effectiveness of position-based addressing. Many current methods enforce rigid patterns in attention maps, limiting the ability to model long-range dependencies and adapt to diverse tasks. Additionally, most positional encodings are learned as general biases, lacking the specialization required for different instances within a dataset. To address this, we propose conTextualized equivariAnt Position Embedding (TAPE), a novel framework that enhances positional embeddings by incorporating sequence content across layers. TAPE introduces dynamic, context-aware positional encodings, overcoming the constraints of traditional fixed patterns. By enforcing permutation and orthogonal equivariance, TAPE ensures the stability of positional encodings during updates, improving robustness and adaptability. Our method can be easily integrated into pre-trained transformers, offering parameter-efficient fine-tuning with minimal overhead. Extensive experiments shows that TAPE achieves superior performance in language modeling, arithmetic reasoning, and long-context retrieval tasks compared to existing positional embedding techniques.
Memory-Based Dual Gaussian Processes for Sequential Learning
Sequential learning with Gaussian processes (GPs) is challenging when access to past data is limited, for example, in continual and active learning. In such cases, errors can accumulate over time due to inaccuracies in the posterior, hyperparameters, and inducing points, making accurate learning challenging. Here, we present a method to keep all such errors in check using the recently proposed dual sparse variational GP. Our method enables accurate inference for generic likelihoods and improves learning by actively building and updating a memory of past data. We demonstrate its effectiveness in several applications involving Bayesian optimization, active learning, and continual learning.
Do RAG Systems Suffer From Positional Bias?
Retrieval Augmented Generation enhances LLM accuracy by adding passages retrieved from an external corpus to the LLM prompt. This paper investigates how positional bias - the tendency of LLMs to weight information differently based on its position in the prompt - affects not only the LLM's capability to capitalize on relevant passages, but also its susceptibility to distracting passages. Through extensive experiments on three benchmarks, we show how state-of-the-art retrieval pipelines, while attempting to retrieve relevant passages, systematically bring highly distracting ones to the top ranks, with over 60% of queries containing at least one highly distracting passage among the top-10 retrieved passages. As a result, the impact of the LLM positional bias, which in controlled settings is often reported as very prominent by related works, is actually marginal in real scenarios since both relevant and distracting passages are, in turn, penalized. Indeed, our findings reveal that sophisticated strategies that attempt to rearrange the passages based on LLM positional preferences do not perform better than random shuffling.
PNI : Industrial Anomaly Detection using Position and Neighborhood Information
Because anomalous samples cannot be used for training, many anomaly detection and localization methods use pre-trained networks and non-parametric modeling to estimate encoded feature distribution. However, these methods neglect the impact of position and neighborhood information on the distribution of normal features. To overcome this, we propose a new algorithm, PNI, which estimates the normal distribution using conditional probability given neighborhood features, modeled with a multi-layer perceptron network. Moreover, position information is utilized by creating a histogram of representative features at each position. Instead of simply resizing the anomaly map, the proposed method employs an additional refine network trained on synthetic anomaly images to better interpolate and account for the shape and edge of the input image. We conducted experiments on the MVTec AD benchmark dataset and achieved state-of-the-art performance, with 99.56\% and 98.98\% AUROC scores in anomaly detection and localization, respectively.
CORRECT: COndensed eRror RECognition via knowledge Transfer in multi-agent systems
Multi-agent systems (MAS) are increasingly capable of tackling complex real-world tasks, yet their reliance on inter-agent coordination, tool use, and long-horizon reasoning makes error recognition particularly challenging. Minor errors can propagate across agents, escalating into task failures while producing long, intertwined execution trajectories that impose significant costs for both human developers and automated systems to debug and analyze. Our key insight is that, despite surface differences in failure trajectories (e.g., logs), MAS errors often recur with similar structural patterns. This paper presents CORRECT, the first lightweight, training-free framework that leverages an online cache of distilled error schemata to recognize and transfer knowledge of failure structures across new requests. This cache-based reuse allows LLMs to perform targeted error localization at inference time, avoiding the need for expensive retraining while adapting to dynamic MAS deployments in subseconds. To support rigorous study in this domain, we also introduce CORRECT-Error, a large-scale dataset of over 2,000 annotated trajectories collected through a novel error-injection pipeline guided by real-world distributions, and further validated through human evaluation to ensure alignment with natural failure patterns. Experiments across seven diverse MAS applications show that CORRECT improves step-level error localization up to 19.8% over existing advances while at near-zero overhead, substantially narrowing the gap between automated and human-level error recognition.
Rethinking Positional Encoding
It is well noted that coordinate based MLPs benefit -- in terms of preserving high-frequency information -- through the encoding of coordinate positions as an array of Fourier features. Hitherto, the rationale for the effectiveness of these positional encodings has been solely studied through a Fourier lens. In this paper, we strive to broaden this understanding by showing that alternative non-Fourier embedding functions can indeed be used for positional encoding. Moreover, we show that their performance is entirely determined by a trade-off between the stable rank of the embedded matrix and the distance preservation between embedded coordinates. We further establish that the now ubiquitous Fourier feature mapping of position is a special case that fulfills these conditions. Consequently, we present a more general theory to analyze positional encoding in terms of shifted basis functions. To this end, we develop the necessary theoretical formulae and empirically verify that our theoretical claims hold in practice. Codes available at https://github.com/osiriszjq/Rethinking-positional-encoding.
ALIM: Adjusting Label Importance Mechanism for Noisy Partial Label Learning
Noisy partial label learning (noisy PLL) is an important branch of weakly supervised learning. Unlike PLL where the ground-truth label must conceal in the candidate label set, noisy PLL relaxes this constraint and allows the ground-truth label may not be in the candidate label set. To address this challenging problem, most of the existing works attempt to detect noisy samples and estimate the ground-truth label for each noisy sample. However, detection errors are unavoidable. These errors can accumulate during training and continuously affect model optimization. To this end, we propose a novel framework for noisy PLL with theoretical guarantees, called ``Adjusting Label Importance Mechanism (ALIM)''. It aims to reduce the negative impact of detection errors by trading off the initial candidate set and model outputs. ALIM is a plug-in strategy that can be integrated with existing PLL approaches. Experimental results on benchmark datasets demonstrate that our method can achieve state-of-the-art performance on noisy PLL. \textcolor[rgb]{0.93,0.0,0.47}{Our code can be found in Supplementary Material}.
Contextual Position Encoding: Learning to Count What's Important
The attention mechanism is a critical component of Large Language Models (LLMs) that allows tokens in a sequence to interact with each other, but is order-invariant. Incorporating position encoding (PE) makes it possible to address by position, such as attending to the i-th token. However, current PE methods use token counts to derive position, and thus cannot generalize to higher levels of abstraction, such as attending to the i-th sentence. In this paper, we propose a new position encoding method, Contextual Position Encoding (CoPE), that allows positions to be conditioned on context by incrementing position only on certain tokens determined by the model. This allows more general position addressing such as attending to the i-th particular word, noun, or sentence. We show that CoPE can solve the selective copy, counting and Flip-Flop tasks where popular position embeddings fail, and improves perplexity on language modeling and coding tasks.
NLPositionality: Characterizing Design Biases of Datasets and Models
Design biases in NLP systems, such as performance differences for different populations, often stem from their creator's positionality, i.e., views and lived experiences shaped by identity and background. Despite the prevalence and risks of design biases, they are hard to quantify because researcher, system, and dataset positionality is often unobserved. We introduce NLPositionality, a framework for characterizing design biases and quantifying the positionality of NLP datasets and models. Our framework continuously collects annotations from a diverse pool of volunteer participants on LabintheWild, and statistically quantifies alignment with dataset labels and model predictions. We apply NLPositionality to existing datasets and models for two tasks -- social acceptability and hate speech detection. To date, we have collected 16,299 annotations in over a year for 600 instances from 1,096 annotators across 87 countries. We find that datasets and models align predominantly with Western, White, college-educated, and younger populations. Additionally, certain groups, such as non-binary people and non-native English speakers, are further marginalized by datasets and models as they rank least in alignment across all tasks. Finally, we draw from prior literature to discuss how researchers can examine their own positionality and that of their datasets and models, opening the door for more inclusive NLP systems.
Attenuation Bias with Latent Predictors
Many political science theories relate to latent variables, but such quantities cannot be observed directly and must instead be estimated from data with inherent uncertainty. In regression models, when a variable is measured with error, its slope coefficient is known to be biased toward zero. We show how measurement error interacts with unique aspects of latent variable estimation, identification restrictions in particular, and demonstrate how common error adjustment strategies can worsen bias. We introduce a method for adjusting coefficients on latent predictors, which reduces bias and typically increases the magnitude of estimated coefficients, often dramatically. We illustrate these dynamics using several different estimation strategies for the latent predictors. Corrected estimates using our proposed method show stronger relationships -- sometimes up to 50% larger -- than those from naive regression. Our findings highlight the importance of considering measurement error in latent predictors and the inadequacy of many commonly used approaches for dealing with this issue.
Benchmarking the Myopic Trap: Positional Bias in Information Retrieval
This study investigates a specific form of positional bias, termed the Myopic Trap, where retrieval models disproportionately attend to the early parts of documents while overlooking relevant information that appears later. To systematically quantify this phenomenon, we propose a semantics-preserving evaluation framework that repurposes the existing NLP datasets into position-aware retrieval benchmarks. By evaluating the SOTA models of full retrieval pipeline, including BM25, embedding models, ColBERT-style late-interaction models, and reranker models, we offer a broader empirical perspective on positional bias than prior work. Experimental results show that embedding models and ColBERT-style models exhibit significant performance degradation when query-related content is shifted toward later positions, indicating a pronounced head bias. Notably, under the same training configuration, ColBERT-style approach show greater potential for mitigating positional bias compared to the traditional single-vector approach. In contrast, BM25 and reranker models remain largely unaffected by such perturbations, underscoring their robustness to positional bias. Code and data are publicly available at: www.github.com/NovaSearch-Team/RAG-Retrieval.
Base of RoPE Bounds Context Length
Position embedding is a core component of current Large Language Models (LLMs). Rotary position embedding (RoPE), a technique that encodes the position information with a rotation matrix, has been the de facto choice for position embedding in many LLMs, such as the Llama series. RoPE has been further utilized to extend long context capability, which is roughly based on adjusting the base parameter of RoPE to mitigate out-of-distribution (OOD) problems in position embedding. However, in this paper, we find that LLMs may obtain a superficial long-context ability based on the OOD theory. We revisit the role of RoPE in LLMs and propose a novel property of long-term decay, we derive that the base of RoPE bounds context length: there is an absolute lower bound for the base value to obtain certain context length capability. Our work reveals the relationship between context length and RoPE base both theoretically and empirically, which may shed light on future long context training.
Segmentation with Noisy Labels via Spatially Correlated Distributions
In semantic segmentation, the accuracy of models heavily depends on the high-quality annotations. However, in many practical scenarios such as medical imaging and remote sensing, obtaining true annotations is not straightforward and usually requires significant human labor. Relying on human labor often introduces annotation errors, including mislabeling, omissions, and inconsistency between annotators. In the case of remote sensing, differences in procurement time can lead to misaligned ground truth annotations. These label errors are not independently distributed, and instead usually appear in spatially connected regions where adjacent pixels are more likely to share the same errors. To address these issues, we propose an approximate Bayesian estimation based on a probabilistic model that assumes training data includes label errors, incorporating the tendency for these errors to occur with spatial correlations between adjacent pixels. Bayesian inference requires computing the posterior distribution of label errors, which becomes intractable when spatial correlations are present. We represent the correlation of label errors between adjacent pixels through a Gaussian distribution whose covariance is structured by a Kac-Murdock-Szeg\"{o} (KMS) matrix, solving the computational challenges. Through experiments on multiple segmentation tasks, we confirm that leveraging the spatial correlation of label errors significantly improves performance. Notably, in specific tasks such as lung segmentation, the proposed method achieves performance comparable to training with clean labels under moderate noise levels. Code is available at https://github.com/pfnet-research/Bayesian_SpatialCorr.
HoPE: Hyperbolic Rotary Positional Encoding for Stable Long-Range Dependency Modeling in Large Language Models
Positional encoding mechanisms enable Transformers to model sequential structure and long-range dependencies in text. While absolute positional encodings struggle with extrapolation to longer sequences due to fixed positional representations, and relative approaches like Alibi exhibit performance degradation on extremely long contexts, the widely-used Rotary Positional Encoding (RoPE) introduces oscillatory attention patterns that hinder stable long-distance dependency modelling. We address these limitations through a geometric reformulation of positional encoding. Drawing inspiration from Lorentz transformations in hyperbolic geometry, we propose Hyperbolic Rotary Positional Encoding (HoPE), which leverages hyperbolic functions to implement Lorentz rotations on token representations. Theoretical analysis demonstrates that RoPE is a special case of our generalized formulation. HoPE fundamentally resolves RoPE's slation issues by enforcing monotonic decay of attention weights with increasing token distances. Extensive experimental results, including perplexity evaluations under several extended sequence benchmarks, show that HoPE consistently exceeds existing positional encoding methods. These findings underscore HoPE's enhanced capacity for representing and generalizing long-range dependencies. Data and code will be available.
LPO: Towards Accurate GUI Agent Interaction via Location Preference Optimization
The advent of autonomous agents is transforming interactions with Graphical User Interfaces (GUIs) by employing natural language as a powerful intermediary. Despite the predominance of Supervised Fine-Tuning (SFT) methods in current GUI agents for achieving spatial localization, these methods face substantial challenges due to their limited capacity to accurately perceive positional data. Existing strategies, such as reinforcement learning, often fail to assess positional accuracy effectively, thereby restricting their utility. In response, we introduce Location Preference Optimization (LPO), a novel approach that leverages locational data to optimize interaction preferences. LPO uses information entropy to predict interaction positions by focusing on zones rich in information. Besides, it further introduces a dynamic location reward function based on physical distance, reflecting the varying importance of interaction positions. Supported by Group Relative Preference Optimization (GRPO), LPO facilitates an extensive exploration of GUI environments and significantly enhances interaction precision. Comprehensive experiments demonstrate LPO's superior performance, achieving SOTA results across both offline benchmarks and real-world online evaluations. Our code will be made publicly available soon, at https://github.com/AIDC-AI/LPO.
MALM: Mixing Augmented Language Modeling for Zero-Shot Machine Translation
Large pre-trained language models have brought remarkable progress in NLP. Pre-training and Fine-tuning have given state-of-art performance across tasks in text processing. Data Augmentation techniques have also helped build state-of-art models on low or zero resource tasks. Many works in the past have attempted at learning a single massively-multilingual machine translation model for zero-shot translation. Although those translation models are producing correct translations, the main challenge is those models are producing the wrong languages for zero-shot translation. This work and its results indicate that prompt conditioned large models do not suffer from off-target language errors i.e. errors arising due to translation to wrong languages. We empirically demonstrate the effectiveness of self-supervised pre-training and data augmentation for zero-shot multi-lingual machine translation.
iSEA: An Interactive Pipeline for Semantic Error Analysis of NLP Models
Error analysis in NLP models is essential to successful model development and deployment. One common approach for diagnosing errors is to identify subpopulations in the dataset where the model produces the most errors. However, existing approaches typically define subpopulations based on pre-defined features, which requires users to form hypotheses of errors in advance. To complement these approaches, we propose iSEA, an Interactive Pipeline for Semantic Error Analysis in NLP Models, which automatically discovers semantically-grounded subpopulations with high error rates in the context of a human-in-the-loop interactive system. iSEA enables model developers to learn more about their model errors through discovered subpopulations, validate the sources of errors through interactive analysis on the discovered subpopulations, and test hypotheses about model errors by defining custom subpopulations. The tool supports semantic descriptions of error-prone subpopulations at the token and concept level, as well as pre-defined higher-level features. Through use cases and expert interviews, we demonstrate how iSEA can assist error understanding and analysis.
Positional Description Matters for Transformers Arithmetic
Transformers, central to the successes in modern Natural Language Processing, often falter on arithmetic tasks despite their vast capabilities --which paradoxically include remarkable coding abilities. We observe that a crucial challenge is their naive reliance on positional information to solve arithmetic problems with a small number of digits, leading to poor performance on larger numbers. Herein, we delve deeper into the role of positional encoding, and propose several ways to fix the issue, either by modifying the positional encoding directly, or by modifying the representation of the arithmetic task to leverage standard positional encoding differently. We investigate the value of these modifications for three tasks: (i) classical multiplication, (ii) length extrapolation in addition, and (iii) addition in natural language context. For (i) we train a small model on a small dataset (100M parameters and 300k samples) with remarkable aptitude in (direct, no scratchpad) 15 digits multiplication and essentially perfect up to 12 digits, while usual training in this context would give a model failing at 4 digits multiplication. In the experiments on addition, we use a mere 120k samples to demonstrate: for (ii) extrapolation from 10 digits to testing on 12 digits numbers while usual training would have no extrapolation, and for (iii) almost perfect accuracy up to 5 digits while usual training would be correct only up to 3 digits (which is essentially memorization with a training set of 120k samples).
Learnable Fourier Features for Multi-Dimensional Spatial Positional Encoding
Attentional mechanisms are order-invariant. Positional encoding is a crucial component to allow attention-based deep model architectures such as Transformer to address sequences or images where the position of information matters. In this paper, we propose a novel positional encoding method based on learnable Fourier features. Instead of hard-coding each position as a token or a vector, we represent each position, which can be multi-dimensional, as a trainable encoding based on learnable Fourier feature mapping, modulated with a multi-layer perceptron. The representation is particularly advantageous for a spatial multi-dimensional position, e.g., pixel positions on an image, where L_2 distances or more complex positional relationships need to be captured. Our experiments based on several public benchmark tasks show that our learnable Fourier feature representation for multi-dimensional positional encoding outperforms existing methods by both improving the accuracy and allowing faster convergence.
Quantifying Positional Biases in Text Embedding Models
Embedding models are crucial for tasks in Information Retrieval (IR) and semantic similarity measurement, yet their handling of longer texts and associated positional biases remains underexplored. In this study, we investigate the impact of content position and input size on text embeddings. Our experiments reveal that embedding models, irrespective of their positional encoding mechanisms, disproportionately prioritize the beginning of an input. Ablation studies demonstrate that insertion of irrelevant text or removal at the start of a document reduces cosine similarity between altered and original embeddings by up to 12.3% more than ablations at the end. Regression analysis further confirms this bias, with sentence importance declining as position moves further from the start, even with with content-agnosticity. We hypothesize that this effect arises from pre-processing strategies and chosen positional encoding techniques. These findings quantify the sensitivity of retrieval systems and suggest a new lens towards embedding model robustness.
MouSi: Poly-Visual-Expert Vision-Language Models
Current large vision-language models (VLMs) often encounter challenges such as insufficient capabilities of a single visual component and excessively long visual tokens. These issues can limit the model's effectiveness in accurately interpreting complex visual information and over-lengthy contextual information. Addressing these challenges is crucial for enhancing the performance and applicability of VLMs. This paper proposes the use of ensemble experts technique to synergizes the capabilities of individual visual encoders, including those skilled in image-text matching, OCR, image segmentation, etc. This technique introduces a fusion network to unify the processing of outputs from different visual experts, while bridging the gap between image encoders and pre-trained LLMs. In addition, we explore different positional encoding schemes to alleviate the waste of positional encoding caused by lengthy image feature sequences, effectively addressing the issue of position overflow and length limitations. For instance, in our implementation, this technique significantly reduces the positional occupancy in models like SAM, from a substantial 4096 to a more efficient and manageable 64 or even down to 1. Experimental results demonstrate that VLMs with multiple experts exhibit consistently superior performance over isolated visual encoders and mark a significant performance boost as more experts are integrated. We have open-sourced the training code used in this report. All of these resources can be found on our project website.
Latent Positional Information is in the Self-Attention Variance of Transformer Language Models Without Positional Embeddings
The use of positional embeddings in transformer language models is widely accepted. However, recent research has called into question the necessity of such embeddings. We further extend this inquiry by demonstrating that a randomly initialized and frozen transformer language model, devoid of positional embeddings, inherently encodes strong positional information through the shrinkage of self-attention variance. To quantify this variance, we derive the underlying distribution of each step within a transformer layer. Through empirical validation using a fully pretrained model, we show that the variance shrinkage effect still persists after extensive gradient updates. Our findings serve to justify the decision to discard positional embeddings and thus facilitate more efficient pretraining of transformer language models.
Monotonic Location Attention for Length Generalization
We explore different ways to utilize position-based cross-attention in seq2seq networks to enable length generalization in algorithmic tasks. We show that a simple approach of interpolating the original and reversed encoded representations combined with relative attention allows near-perfect length generalization for both forward and reverse lookup tasks or copy tasks that had been generally hard to tackle. We also devise harder diagnostic tasks where the relative distance of the ideal attention position varies with timestep. In such settings, the simple interpolation trick with relative attention is not sufficient. We introduce novel variants of location attention building on top of Dubois et al. (2020) to address the new diagnostic tasks. We also show the benefits of our approaches for length generalization in SCAN (Lake & Baroni, 2018) and CFQ (Keysers et al., 2020). Our code is available on GitHub.
LongRoPE: Extending LLM Context Window Beyond 2 Million Tokens
Large context window is a desirable feature in large language models (LLMs). However, due to high fine-tuning costs, scarcity of long texts, and catastrophic values introduced by new token positions, current extended context windows are limited to around 128k tokens. This paper introduces LongRoPE that, for the first time, extends the context window of pre-trained LLMs to an impressive 2048k tokens, with up to only 1k fine-tuning steps at within 256k training lengths, while maintaining performance at the original short context window. This is achieved by three key innovations: (i) we identify and exploit two forms of non-uniformities in positional interpolation through an efficient search, providing a better initialization for fine-tuning and enabling an 8x extension in non-fine-tuning scenarios; (ii) we introduce a progressive extension strategy that first fine-tunes a 256k length LLM and then conducts a second positional interpolation on the fine-tuned extended LLM to achieve a 2048k context window; (iii) we readjust LongRoPE on 8k length to recover the short context window performance. Extensive experiments on LLaMA2 and Mistral across various tasks demonstrate the effectiveness of our method. Models extended via LongRoPE retain the original architecture with minor modifications to the positional embedding, and can reuse most pre-existing optimizations.
Your other Left! Vision-Language Models Fail to Identify Relative Positions in Medical Images
Clinical decision-making relies heavily on understanding relative positions of anatomical structures and anomalies. Therefore, for Vision-Language Models (VLMs) to be applicable in clinical practice, the ability to accurately determine relative positions on medical images is a fundamental prerequisite. Despite its importance, this capability remains highly underexplored. To address this gap, we evaluate the ability of state-of-the-art VLMs, GPT-4o, Llama3.2, Pixtral, and JanusPro, and find that all models fail at this fundamental task. Inspired by successful approaches in computer vision, we investigate whether visual prompts, such as alphanumeric or colored markers placed on anatomical structures, can enhance performance. While these markers provide moderate improvements, results remain significantly lower on medical images compared to observations made on natural images. Our evaluations suggest that, in medical imaging, VLMs rely more on prior anatomical knowledge than on actual image content for answering relative position questions, often leading to incorrect conclusions. To facilitate further research in this area, we introduce the MIRP , Medical Imaging Relative Positioning, benchmark dataset, designed to systematically evaluate the capability to identify relative positions in medical images.
LOOPE: Learnable Optimal Patch Order in Positional Embeddings for Vision Transformers
Positional embeddings (PE) play a crucial role in Vision Transformers (ViTs) by providing spatial information otherwise lost due to the permutation invariant nature of self attention. While absolute positional embeddings (APE) have shown theoretical advantages over relative positional embeddings (RPE), particularly due to the ability of sinusoidal functions to preserve spatial inductive biases like monotonicity and shift invariance, a fundamental challenge arises when mapping a 2D grid to a 1D sequence. Existing methods have mostly overlooked or never explored the impact of patch ordering in positional embeddings. To address this, we propose LOOPE, a learnable patch-ordering method that optimizes spatial representation for a given set of frequencies, providing a principled approach to patch order optimization. Empirical results show that our PE significantly improves classification accuracy across various ViT architectures. To rigorously evaluate the effectiveness of positional embeddings, we introduce the "Three Cell Experiment", a novel benchmarking framework that assesses the ability of PEs to retain relative and absolute positional information across different ViT architectures. Unlike standard evaluations, which typically report a performance gap of 4 to 6% between models with and without PE, our method reveals a striking 30 to 35% difference, offering a more sensitive diagnostic tool to measure the efficacy of PEs. Our experimental analysis confirms that the proposed LOOPE demonstrates enhanced effectiveness in retaining both relative and absolute positional information.
Extending the Context of Pretrained LLMs by Dropping Their Positional Embeddings
So far, expensive finetuning beyond the pretraining sequence length has been a requirement for effectively extending the context of language models (LM). In this work, we break this key bottleneck by Dropping the Positional Embeddings of LMs after training (DroPE). Our simple method is motivated by three key theoretical and empirical observations. First, positional embeddings (PEs) serve a crucial role during pretraining, providing an important inductive bias that significantly facilitates convergence. Second, over-reliance on this explicit positional information is also precisely what prevents test-time generalization to sequences of unseen length, even when using popular PE-scaling methods. Third, positional embeddings are not an inherent requirement of effective language modeling and can be safely removed after pretraining, following a short recalibration phase. Empirically, DroPE yields seamless zero-shot context extension without any long-context finetuning, quickly adapting pretrained LMs without compromising their capabilities in the original training context. Our findings hold across different models and dataset sizes, far outperforming previous specialized architectures and established rotary positional embedding scaling methods.
Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies
The success of long short-term memory (LSTM) neural networks in language processing is typically attributed to their ability to capture long-distance statistical regularities. Linguistic regularities are often sensitive to syntactic structure; can such dependencies be captured by LSTMs, which do not have explicit structural representations? We begin addressing this question using number agreement in English subject-verb dependencies. We probe the architecture's grammatical competence both using training objectives with an explicit grammatical target (number prediction, grammaticality judgments) and using language models. In the strongly supervised settings, the LSTM achieved very high overall accuracy (less than 1% errors), but errors increased when sequential and structural information conflicted. The frequency of such errors rose sharply in the language-modeling setting. We conclude that LSTMs can capture a non-trivial amount of grammatical structure given targeted supervision, but stronger architectures may be required to further reduce errors; furthermore, the language modeling signal is insufficient for capturing syntax-sensitive dependencies, and should be supplemented with more direct supervision if such dependencies need to be captured.
MedVista3D: Vision-Language Modeling for Reducing Diagnostic Errors in 3D CT Disease Detection, Understanding and Reporting
Radiologic diagnostic errors-under-reading errors, inattentional blindness, and communication failures-remain prevalent in clinical practice. These issues often stem from missed localized abnormalities, limited global context, and variability in report language. These challenges are amplified in 3D imaging, where clinicians must examine hundreds of slices per scan. Addressing them requires systems with precise localized detection, global volume-level reasoning, and semantically consistent natural language reporting. However, existing 3D vision-language models are unable to meet all three needs jointly, lacking local-global understanding for spatial reasoning and struggling with the variability and noise of uncurated radiology reports. We present MedVista3D, a multi-scale semantic-enriched vision-language pretraining framework for 3D CT analysis. To enable joint disease detection and holistic interpretation, MedVista3D performs local and global image-text alignment for fine-grained representation learning within full-volume context. To address report variability, we apply language model rewrites and introduce a Radiology Semantic Matching Bank for semantics-aware alignment. MedVista3D achieves state-of-the-art performance on zero-shot disease classification, report retrieval, and medical visual question answering, while transferring well to organ segmentation and prognosis prediction. Code and datasets will be released.
Dynamic Position Encoding for Transformers
Recurrent models have been dominating the field of neural machine translation (NMT) for the past few years. Transformers vaswani2017attention, have radically changed it by proposing a novel architecture that relies on a feed-forward backbone and self-attention mechanism. Although Transformers are powerful, they could fail to properly encode sequential/positional information due to their non-recurrent nature. To solve this problem, position embeddings are defined exclusively for each time step to enrich word information. However, such embeddings are fixed after training regardless of the task and the word ordering system of the source or target language. In this paper, we propose a novel architecture with new position embeddings depending on the input text to address this shortcoming by taking the order of target words into consideration. Instead of using predefined position embeddings, our solution generates new embeddings to refine each word's position information. Since we do not dictate the position of source tokens and learn them in an end-to-end fashion, we refer to our method as dynamic position encoding (DPE). We evaluated the impact of our model on multiple datasets to translate from English into German, French, and Italian and observed meaningful improvements in comparison to the original Transformer.
Coordinate Quantized Neural Implicit Representations for Multi-view Reconstruction
In recent years, huge progress has been made on learning neural implicit representations from multi-view images for 3D reconstruction. As an additional input complementing coordinates, using sinusoidal functions as positional encodings plays a key role in revealing high frequency details with coordinate-based neural networks. However, high frequency positional encodings make the optimization unstable, which results in noisy reconstructions and artifacts in empty space. To resolve this issue in a general sense, we introduce to learn neural implicit representations with quantized coordinates, which reduces the uncertainty and ambiguity in the field during optimization. Instead of continuous coordinates, we discretize continuous coordinates into discrete coordinates using nearest interpolation among quantized coordinates which are obtained by discretizing the field in an extremely high resolution. We use discrete coordinates and their positional encodings to learn implicit functions through volume rendering. This significantly reduces the variations in the sample space, and triggers more multi-view consistency constraints on intersections of rays from different views, which enables to infer implicit function in a more effective way. Our quantized coordinates do not bring any computational burden, and can seamlessly work upon the latest methods. Our evaluations under the widely used benchmarks show our superiority over the state-of-the-art. Our code is available at https://github.com/MachinePerceptionLab/CQ-NIR.
Position Coupling: Improving Length Generalization of Arithmetic Transformers Using Task Structure
Even for simple arithmetic tasks like integer addition, it is challenging for Transformers to generalize to longer sequences than those encountered during training. To tackle this problem, we propose position coupling, a simple yet effective method that directly embeds the structure of the tasks into the positional encoding of a (decoder-only) Transformer. Taking a departure from the vanilla absolute position mechanism assigning unique position IDs to each of the tokens, we assign the same position IDs to two or more "relevant" tokens; for integer addition tasks, we regard digits of the same significance as in the same position. On the empirical side, we show that with the proposed position coupling, our models trained on 1 to 30-digit additions can generalize up to 200-digit additions (6.67x of the trained length). On the theoretical side, we prove that a 1-layer Transformer with coupled positions can solve the addition task involving exponentially many digits, whereas any 1-layer Transformer without positional information cannot entirely solve it. We also demonstrate that position coupling can be applied to other algorithmic tasks such as Nx2 multiplication and a two-dimensional task.
Discovering Knowledge Deficiencies of Language Models on Massive Knowledge Base
Large language models (LLMs) possess impressive linguistic capabilities but often fail to faithfully retain factual knowledge, leading to hallucinations and unreliable outputs. Understanding LLMs' knowledge deficiencies by exhaustively evaluating against full-scale knowledge bases is computationally prohibitive, especially for closed-weight models. We propose stochastic error ascent (SEA), a scalable and efficient framework for discovering knowledge deficiencies (errors) in closed-weight LLMs under a strict query budget. Rather than naively probing all knowledge candidates, SEA formulates error discovery as a stochastic optimization process: it iteratively retrieves new high-error candidates by leveraging the semantic similarity to previously observed failures. To further enhance search efficiency and coverage, SEA employs hierarchical retrieval across document and paragraph levels, and constructs a relation directed acyclic graph to model error propagation and identify systematic failure modes. Empirically, SEA uncovers 40.7x more knowledge errors than Automated Capability Discovery and 26.7% more than AutoBencher, while reducing the cost-per-error by 599x and 9x, respectively. Human evaluation confirms the high quality of generated questions, while ablation and convergence analyses validate the contribution of each component in SEA. Further analysis on the discovered errors reveals correlated failure patterns across LLM families and recurring deficits, highlighting the need for better data coverage and targeted fine-tuning in future LLM development.
PSC: Extending Context Window of Large Language Models via Phase Shift Calibration
Rotary Position Embedding (RoPE) is an efficient position encoding approach and is widely utilized in numerous large language models (LLMs). Recently, a lot of methods have been put forward to further expand the context window based on RoPE. The core concept of those methods is to predefine or search for a set of factors to rescale the base frequencies of RoPE. Nevertheless, it is quite a challenge for existing methods to predefine an optimal factor due to the exponential search space. In view of this, we introduce PSC (Phase Shift Calibration), a small module for calibrating the frequencies predefined by existing methods. With the employment of PSC, we demonstrate that many existing methods can be further enhanced, like PI, YaRN, and LongRoPE. We conducted extensive experiments across multiple models and tasks. The results demonstrate that (1) when PSC is enabled, the comparative reductions in perplexity increase as the context window size is varied from 16k, to 32k, and up to 64k. (2) Our approach is broadly applicable and exhibits robustness across a variety of models and tasks. The code can be found at https://github.com/WNQzhu/PSC.
Batch Speculative Decoding Done Right
Speculative decoding speeds up LLM inference by using a small draft model to propose multiple tokens that a target model verifies in parallel. Extending this idea to batches is essential for production serving, but it introduces the ragged tensor problem: sequences in the same batch accept different numbers of draft tokens, breaking right-alignment and corrupting position IDs, attention masks, and KV-cache state. We show that several existing batch implementations violate output equivalence-the fundamental requirement that speculative decoding must produce identical token sequences to standard autoregressive generation. These violations occur precisely due to improper handling of the ragged tensor problem. In response, we (1) characterize the synchronization requirements that guarantee correctness, (2) present a correctness-first batch speculative decoding EQSPEC that exposes realignment as consuming 40% of overhead, and (3) introduce EXSPEC, which maintains a sliding pool of sequences and dynamically forms same-length groups, to reduce the realignment overhead while preserving per-sequence speculative speedups. On the SpecBench dataset, across Vicuna-7B/68M, Qwen3-8B/0.6B, and GLM-4-9B/0.6B target/draft pairs, our approach achieves up to 3times throughput improvement at batch size 8 compared to batch size 1, with efficient scaling through batch size 8, while maintaining 95% output equivalence. Our method requires no custom kernels and integrates cleanly with existing inference stacks. Our code is available at https://github.com/eBay/spec_dec.
GLEU Without Tuning
The GLEU metric was proposed for evaluating grammatical error corrections using n-gram overlap with a set of reference sentences, as opposed to precision/recall of specific annotated errors (Napoles et al., 2015). This paper describes improvements made to the GLEU metric that address problems that arise when using an increasing number of reference sets. Unlike the originally presented metric, the modified metric does not require tuning. We recommend that this version be used instead of the original version.
