Challengebot / app3.py
decodingdatascience's picture
Update app3.py
00bebe2 verified
import os
from pathlib import Path
import gradio as gr
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
# ======================
# Config (safe defaults)
# ======================
MODEL = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
EMBED_MODEL = os.getenv("OPENAI_EMBED_MODEL", "text-embedding-3-small")
TOP_K = int(os.getenv("TOP_K", "3"))
# Knowledge base file in the Space repo root (recommended)
DOC_PATH = Path(os.getenv("DOC_PATH", "challenge_context.txt"))
# DDS logo (raw GitHub URL)
LOGO_URL = os.getenv(
"LOGO_URL",
"https://github.com/Decoding-Data-Science/airesidency/blob/main/dds_logo.jpg?raw=true",
)
# Behavior / guardrails
SYSTEM_GUARDRAILS = (
"You are Challenge Copilot. Answer ONLY using the provided context from challenge_context.txt. "
"If the answer is not in the context, say: 'I don’t know based on the current document.' "
"Then ask the user to add the missing official details to challenge_context.txt."
)
APP_TITLE = "Building AI Application Challenge Copilot"
APP_SUBTITLE = (
"Ask questions about the Building AI Application Challenge using the official content you put into "
"challenge_context.txt (LlamaIndex + OpenAI)."
)
# ======================
# Index build (cached)
# ======================
_INDEX = None
_QUERY_ENGINE = None
def build_index():
"""Build and cache the LlamaIndex query engine."""
global _INDEX, _QUERY_ENGINE
if _QUERY_ENGINE is not None:
return _QUERY_ENGINE
# OpenAI key must exist in Space secrets
if not os.getenv("OPENAI_API_KEY"):
raise RuntimeError(
"OPENAI_API_KEY is missing. Add it in the Space → Settings → Variables and secrets."
)
# Create placeholder TXT if missing so Space can boot
if not DOC_PATH.exists():
DOC_PATH.write_text(
"Add the official Building AI Application Challenge content here.\n",
encoding="utf-8",
)
# LlamaIndex global settings
Settings.llm = OpenAI(model=MODEL, temperature=0.2)
Settings.embed_model = OpenAIEmbedding(model=EMBED_MODEL)
Settings.chunk_size = 800
Settings.chunk_overlap = 120
# Reader expects a directory
data_dir = str(DOC_PATH.parent)
docs = SimpleDirectoryReader(
input_dir=data_dir,
required_exts=[".txt"],
recursive=False,
).load_data()
# Only index the target file
docs = [d for d in docs if d.metadata.get("file_name") == DOC_PATH.name]
if not docs:
raise FileNotFoundError(
f"Could not load {DOC_PATH.name}. Make sure it exists in the repo root (or set DOC_PATH env var)."
)
_INDEX = VectorStoreIndex.from_documents(docs)
_QUERY_ENGINE = _INDEX.as_query_engine(similarity_top_k=TOP_K)
return _QUERY_ENGINE
def format_sources(resp, max_sources=3, max_chars=240):
"""Format top retrieved chunks for transparency."""
lines = []
for i, sn in enumerate(getattr(resp, "source_nodes", [])[:max_sources], start=1):
fn = sn.node.metadata.get("file_name", "unknown")
snippet = sn.node.get_content().replace("\n", " ").strip()[:max_chars]
score = getattr(sn, "score", None)
score_txt = f" (score={score:.3f})" if isinstance(score, (float, int)) else ""
lines.append(f"{i}. {fn}{score_txt}: {snippet}...")
return "\n".join(lines) if lines else "No sources returned."
def chat(message, history):
"""Chat handler used by Gradio ChatInterface."""
qe = build_index()
prompt = (
f"{SYSTEM_GUARDRAILS}\n\n"
f"User question: {message}\n"
f"Answer using ONLY the context."
)
resp = qe.query(prompt)
answer = str(resp).strip()
show_sources = os.getenv("SHOW_SOURCES", "true").lower() == "true"
if show_sources:
answer += "\n\n---\n**Sources:**\n" + format_sources(resp, max_sources=TOP_K)
return answer
# ======================
# UI (professional layout)
# ======================
CSS = """
/* Global polish */
.dds-header { display:flex; align-items:center; gap:16px; }
.dds-logo img { height:60px; width:auto; border-radius:10px; box-shadow: 0 2px 10px rgba(0,0,0,0.10); }
.dds-title { margin:0; line-height:1.1; }
.dds-subtitle { margin:6px 0 0 0; color: #555; }
.dds-muted { color: #666; font-size: 0.95rem; }
.dds-card { border: 1px solid rgba(0,0,0,0.08); border-radius: 14px; padding: 14px; background: rgba(255,255,255,0.7); }
.dds-section-title { margin: 0 0 6px 0; }
"""
# Theme fallback (don’t pass theme to ChatInterface to avoid older-gradio errors)
try:
theme_obj = gr.themes.Soft()
except Exception:
theme_obj = None
with gr.Blocks(theme=theme_obj, css=CSS, title=APP_TITLE) as demo:
# Header row (Logo left + Title right)
with gr.Row():
with gr.Column(scale=1, min_width=140):
gr.HTML(
f"""
<div class="dds-logo">
<img src="{LOGO_URL}" alt="DDS Logo"/>
</div>
"""
)
with gr.Column(scale=6):
gr.HTML(
f"""
<div class="dds-header">
<div>
<h2 class="dds-title">{APP_TITLE}</h2>
<p class="dds-subtitle">{APP_SUBTITLE}</p>
<p class="dds-muted">
If something is missing, add official details to <b>{DOC_PATH.name}</b> and restart the Space.
</p>
</div>
</div>
"""
)
gr.Markdown("---")
# Two sections: Chat + Challenge FAQ
with gr.Row():
# Section 1: Chat
with gr.Column(scale=6):
gr.HTML(
"""
<div class="dds-card">
<h3 class="dds-section-title">Section 1 — Ask the Copilot</h3>
<p class="dds-muted">RAG flow: retrieve relevant chunks → generate a grounded answer using your LLM API.</p>
</div>
"""
)
# IMPORTANT: No theme= here (avoids your earlier error)
gr.ChatInterface(
fn=chat,
examples=[
"What will I build in this live session?",
"Who is this best for?",
"What are the prerequisites?",
"What is the RAG flow in this project?",
"What should I submit (link + repo + write-up)?",
],
)
# Section 2: Challenge FAQ (participant-focused)
with gr.Column(scale=4):
gr.HTML(
"""
<div class="dds-card">
<h3 class="dds-section-title">Section 2 — Challenge FAQ</h3>
<p class="dds-muted">
Quick guidance for participants. If something is not answered here, ask in the Copilot chat.
</p>
</div>
"""
)
with gr.Accordion("FAQ 1 — What should I build for this challenge?", open=False):
gr.Markdown(
"""
- Build a simple AI application aligned to the challenge tracks (LLM/API, no-code/low-code, sponsor tool track, etc.).
- Aim for a **working demo** + **proof-of-work** you can share.
- Ask in chat: *“Suggest 5 project ideas that fit the official rules in the document.”*
""".strip()
)
with gr.Accordion("FAQ 2 — Which track/path should I choose?", open=False):
gr.Markdown(
"""
- Pick based on your level:
- **LLM/API Integration:** Python + API + simple RAG patterns
- **No-code/Low-code:** fastest to ship, less code
- **Sponsor/tool track:** follow the workshop tool (if applicable)
- Ask in chat: *“Given my background (X), which track is best and why?”*
""".strip()
)
with gr.Accordion("FAQ 3 — What is the minimum deliverable to be eligible?", open=False):
gr.Markdown(
"""
Typical minimum:
- A working **app link** that judges can open
- A short description (problem + user + how to use)
- Repo is optional but strongly recommended
Ask in chat: *“What does the official document say about minimum submission requirements?”*
""".strip()
)
with gr.Accordion("FAQ 4 — How do I submit my project?", open=False):
gr.Markdown(
"""
Common submission package:
- App URL (Hugging Face Spaces / Streamlit / etc.)
- Repo URL (optional but strong)
- Short write-up + screenshots/video (if required)
Ask in chat: *“What is the official submission format and where is the submission link?”*
""".strip()
)
with gr.Accordion("FAQ 5 — Where should I deploy so judges can access easily?", open=False):
gr.Markdown(
"""
Low-friction options:
- **Hugging Face Spaces (Gradio)** — easiest for demos
- **Streamlit Community Cloud**
- **Vercel** (for web apps)
Ask in chat: *“What deployment options are recommended in the official challenge doc?”*
""".strip()
)
with gr.Accordion("FAQ 6 — What do judges usually look for?", open=False):
gr.Markdown(
"""
Strong signals:
- Working demo (no errors, easy to use)
- Clear problem + target audience
- Good AI behavior (grounded, safe, consistent)
- Product thinking (UX, clarity, flow)
Ask in chat: *“What are the judging criteria in the official document?”*
""".strip()
)
with gr.Accordion("FAQ 7 — What should I post as proof-of-work?", open=False):
gr.Markdown(
"""
Suggested proof post structure:
- 1-line problem + who it helps
- Demo link + screenshot/GIF
- What you learned + next improvement
Ask in chat: *“Draft a proof-of-work post based on my project idea.”*
""".strip()
)
with gr.Accordion("FAQ 8 — How do I make my app ‘RAG grounded’ (not hallucinating)?", open=False):
gr.Markdown(
"""
Best practices:
- Restrict answers to retrieved context
- Show sources/snippets (optional but strong)
- If missing info → say “Not in document” and request adding content
Ask in chat: *“Answer using only the document; if missing, tell me what section to add.”*
""".strip()
)
with gr.Accordion("FAQ 9 — I can’t find a detail (dates/rules/prizes). What now?", open=False):
gr.Markdown(
f"""
- The Copilot can only answer what exists inside **{DOC_PATH.name}**.
- If the official detail isn’t in the TXT, add it, commit, and restart the Space.
Ask in chat: *“What exact section should I add to cover [missing detail]?”*
""".strip()
)
gr.Markdown("---")
gr.Markdown(
f"""
**Admin notes**
- Context file: `{DOC_PATH.name}`
- Optional env vars: `OPENAI_MODEL`, `OPENAI_EMBED_MODEL`, `TOP_K`, `SHOW_SOURCES`, `DOC_PATH`, `LOGO_URL`
""".strip()
)
if __name__ == "__main__":
demo.launch()