TTS Attentionless VOcoder Streaming
Applies kyutai TTS 0.75b using Attentionless VOcoder streaming
Example
import torch#2.9.0 cu126
from torch import nn
import torch.nn.functional as F
from transformers import Wav2Vec2PreTrainedModel, PretrainedConfig#4.49.0
from huggingface_hub import hf_hub_download
import re
from collections import deque
import sphn
from safetensors.torch import load_file
from sentencepiece import SentencePieceProcessor
from einops import rearrange
class ActivationGating(nn.Module):
def __init__(self, dim_feedforward=4224):
super().__init__()
d = 2816 if dim_feedforward == 4224 else 2048
self.linear_in = nn.Linear(1024, 2 * d, bias=False)
self.linear_out = nn.Linear(d, 1024, bias=False)
def forward(self, x):
x = F.linear(x, self.linear_in.weight)
B, T, _ = x.shape
x = x.view(B, T, 2, -1)
x = F.silu(x[:, :, 0, :]) * x[:, :, 1, :]
x = F.linear(x, self.linear_out.weight)
return x
def apply_rope(q, k, offset=0):
q_type = q.dtype
q = q.to(torch.float)
k = k.to(torch.float)
bs, h, _1, d = k.shape
# fr = torch.exp(-18.420680743952367 / d * torch.arange(d // 2, device=q.device, dtype=torch.float))
# fr = torch.exp(-18.42068099975586 / d * torch.arange(d // 2, device=q.device, dtype=torch.float))
fr = torch.exp(-18.4206809997 / d * torch.arange(d // 2, device=q.device, dtype=torch.float))
t = offset * fr[None, None, :, None]
r = torch.cos(t)
i = torch.sin(t)
q = q.view(bs, h, d // 2, 2) # interleave
k = k.view(bs, h, d // 2, 2)
qor = q[:, :, :, :1] * r - q[:, :, :, 1:] * i
qoi = q[:, :, :, :1] * i + q[:, :, :, 1:] * r
kor = k[:, :, :, :1] * r - k[:, :, :, 1:] * i
koi = k[:, :, :, :1] * i + k[:, :, :, 1:] * r
qo = torch.cat([qor.to(dtype=q_type), qoi.to(dtype=q_type)], dim=3)
ko = torch.cat([kor.to(dtype=q_type), koi.to(dtype=q_type)], dim=3)
return qo.view(bs, h, 1, d), ko.view(bs, h, 1, d)
class RMSNorm(nn.Module):
def __init__(self, d=1024):
super().__init__()
self.alpha = nn.Parameter(torch.full((1, 1, d), 1.0, dtype=torch.float64))
def forward(self, x):
x = x.to(torch.float64)
v = 9e-9 + torch.mean(x * x, dim=2, keepdim=True)
return (x * (self.alpha * torch.rsqrt(v))).to(torch.bfloat16)
class LLMAttention(nn.Module):
def __init__(self, weights_per_step):
super().__init__()
self.weights_per_step = weights_per_step
self.k_history = None
self.v_history = None
p = 9 if weights_per_step else 1
self.out_projs = nn.ModuleList([nn.Linear(1024, 1024, bias=False) for _ in range(p)])
self.in_projs = nn.ModuleList([nn.Linear(1024, 3 * 1024, bias=False) for _ in range(p)])
def forward(self, query):
offset = 0 if self.k_history is None else self.k_history.shape[2] # if overpass RoPE untrained or DPF 16x
if (self.weights_per_step and offset % self.weights_per_step == 0) or (offset % 473 == 0):
self.k_history = None
self.v_history = None
offset = 0
if self.weights_per_step:
x = self.in_projs[offset if offset < 9 else 8](query)
else:
x = self.in_projs[0](query)
q, k, v = rearrange(x, "b t (p h d) -> p b h t d", p=3, h=16)
q, k = apply_rope(q, k, offset=offset)
# KVCACHE
if self.k_history is not None:
self.k_history = torch.cat([self.k_history, k], 2)
self.v_history = torch.cat([self.v_history, v], 2)
else:
self.k_history = k
self.v_history = v
k = self.k_history
v = self.v_history
# ones-bool attn mask sounds better than passing no mask argument
x = F.scaled_dot_product_attention(q, k, v, torch.ones(k.shape[0], 1, 1, k.shape[2],dtype=torch.bool, device=k.device))
x = rearrange(x, "b h t d -> b t (h d)")
if self.weights_per_step:
return self.out_projs[offset if offset < 9 else 8](x)
return self.out_projs[0](x)
class LLMTransformerLayer(nn.Module):
def __init__(self, weights_per_step=None):
super().__init__()
self.self_attn = LLMAttention(weights_per_step=weights_per_step)
self.norm1 = RMSNorm()
self.norm2 = RMSNorm()
self.weights_per_step = weights_per_step
if self.weights_per_step:
self.gating = nn.ModuleList([ActivationGating(3072) for _ in range(9)])
else:
self.gating = ActivationGating()
def forward(self, x):
x = self.self_attn(self.norm1(x)) + x
if self.weights_per_step:
p = self.self_attn.k_history.shape[2] - 1
return x + self.gating[p if p < 9 else 8](self.norm2(x))
return x + self.gating(self.norm2(x))
class LLMTransformer(nn.Module):
def __init__(
self,
num_layers=24,
weights_per_step=False):
super().__init__()
self.layers = nn.ModuleList(
[
LLMTransformerLayer(weights_per_step=weights_per_step)
for _ in range(num_layers)
])
def forward(self, x):
for lay in self.layers:
x = lay(x)
return x
class Voc(Wav2Vec2PreTrainedModel):
'''For using different batch_siz -> Voc._flush()
'''
def __init__(self, config=PretrainedConfig()):
super().__init__(config=config)
self.encoder_transformer = VocTransformer()
self.decoder_transformer = VocTransformer()
self.encoder = SEANetEncoder()
self.decoder = SEANetDecoder()
self.sample_rate = 24000
self.quantizer = SplitResidualVectorQuantizer()
self.downsample = BufferConv1d(512, 512, kernel_size=4, stride=2, groups=1, bias=False)
upsample_channel_wise_bug = True
self.upsample = BufferConvTranspose1d(512, 512, kernel_size=4,
groups=512 if upsample_channel_wise_bug else 1,
stride=2, bias=False)
self.frame_rate = 12.5
self.encode_buffer = None
def _flush(self):
'''stream buffers have tensors of old batch size! Voc()._flush() to clean buffers
'''
self.encode_buffer = None # holds unused (incomplete windows of len < 1920) - we need 1920 to produce 1 token
if self.downsample.previous is not None:
self.downsample.previous = None
if self.upsample.partial is not None:
self.upsample.partial = None
for arch in [self.encoder, self.decoder]:
for _m in arch.model:
if type(_m) is SEANetResnetBlock:
for _b in _m.block:
if type(_b) is BufferConv1d:
if _b.previous is not None:
_b.previous = None
if type(_m) is BufferConv1d:
if _m.previous is not None:
_m.previous = None
if type(_m) is BufferConvTranspose1d:
if _m.partial is not None:
_m.partial = None
@torch.no_grad()
def encode(self, x):
'''24KHz audio to codes
x : [bs, 1, 24 KHz]
c : [bs, 8, time] = 1920 audio samples produce 1 time frame (of n_q codebooks)
'''
if self.encode_buffer is not None:
x = torch.cat([self.encode_buffer, x], 2)
_bs, _1, _len = x.shape
num_frames = int(_len / 1920)
leftover = x[:, :, (num_frames+1) * 1920:]
if leftover.shape[2] > 0:
self.encode_buffer = leftover
else:
self.encode_buffer = None
torch.cuda.empty_cache()
if num_frames > 0:
c = []
for n in range(num_frames):
e = self.encoder(x[:, :, n * 1920:(n + 1) * 1920])
e = self.encoder_transformer(e)
e = self.downsample(e)
_c = self.quantizer.encode(e)
c.append(_c)
c = torch.cat(c, 2)
else:
# num_frames = 0 Early exit -> for x.shape[2]<1920 fill conv buffers but can't output token
c = torch.empty(_bs, 16, 0)
return c
@torch.no_grad()
def decode(self, c):
'''codes to 24kHZ audio
c: [bs, 8, n_tokens]
x: [bs, 1, n_tokens * 1920]
'''
_hidden = []
for i in range(c.shape[2]):
x = self.quantizer.decode(c[:, :, i:i+1])
x = self.upsample(x)
x = self.decoder_transformer(x)
x = self.decoder(x)
_hidden.append(x)
return torch.cat(_hidden, 2) # [bs, 1, 24KHz]
class SEANetResnetBlock(nn.Module):
def __init__(
self,
dim,
kernel_sizes=[3, 1],
):
super().__init__()
block = []
for i, kernel_size in enumerate(kernel_sizes):
block += [
nn.ELU(),
BufferConv1d(
dim if i == 0 else dim // 2,
dim // 2 if i == 0 else dim,
kernel_size=kernel_size,
bias=True,
),
]
self.block = nn.Sequential(*block)
def forward(self, x):
return x + self.block(x)
class SEANetEncoder(nn.Module):
def __init__(
self,
channels=1, # DOES NOT SUPPORT STEREO
dimension=512,
n_filters=64,
ratios=[8, 6, 5, 4],
kernel_size=7,
last_kernel_size=3,
):
super().__init__()
self.ratios = list(reversed(ratios))
del ratios
mult = 1
model=[
BufferConv1d(
channels,
mult * n_filters,
kernel_size,
bias=True
)
]
for i, ratio in enumerate(self.ratios):
model += [SEANetResnetBlock(mult * n_filters),
nn.ELU(),
BufferConv1d(mult * n_filters,
mult * n_filters * 2,
kernel_size=ratio * 2,
stride=ratio,
bias=True)]
mult *= 2
# ENDFOR
model += [nn.ELU(),
BufferConv1d(mult * n_filters,
dimension,
last_kernel_size,
bias=True)]
self.model = nn.Sequential(*model)
def forward(self, x):
return self.model(x)
class SEANetDecoder(nn.Module):
def __init__(
self,
channels=1,
dimension=512,
n_filters=64,
ratios=[8, 6, 5, 4],
kernel_size=7,
last_kernel_size=3):
super().__init__()
mult = int(2 ** len(ratios))
model = [BufferConv1d(dimension,
mult * n_filters,
kernel_size,
bias=True)]
#UP
for i, ratio in enumerate(ratios):
model += [nn.ELU(),
BufferConvTranspose1d(mult * n_filters,
mult * n_filters // 2,
kernel_size=ratio * 2,
stride=ratio,
bias=True),
SEANetResnetBlock(mult * n_filters // 2)]
mult //= 2
# LAST
model += [
nn.ELU(),
BufferConv1d(
n_filters,
channels,
last_kernel_size,
bias=True
),
]
self.model = nn.Sequential(*model)
def forward(self, x):
return self.model(x)
class BufferConv1d(nn.Conv1d):
def __init__(self,
*args,
**kwargs):
super().__init__(*args, **kwargs)
self.previous = None
def forward(self, x):
k = self.kernel_size[0]
if self.previous is not None:
x = torch.cat([self.previous, x], 2)
else: # If self.previous is None => Use zero pad
if k == 3:
p = (2, 0)
x = F.pad(x, p, mode='replicate', value=0.0) # skip connections SeaNetResBlk
elif k == 4: # ConvTrUpsample is the first conv encountered by decode replicate solves pulse
p = (3, 0)
x = F.pad(x, p, mode='replicate', value=0.0)
elif k == 7:
p = (6, 0)
x = F.pad(x, p, mode='replicate', value=0.0)
elif k == 16:
p = (2, 0)
x = F.pad(x, p, mode='replicate', value=0.0) # THis can be also constant w/o pulse occur
num_frames = int( (x.shape[2] - self.kernel_size[0]) / self.stride[0] ) + 1 # +1 is: k starts at left of x and doing (I-k)/s jumps
offset = num_frames * self.stride[0]
self.previous = x[..., offset:]
return super().forward(x)
class BufferConvTranspose1d(nn.ConvTranspose1d):
# kernel 5 has only 1 pixel for input (cloned)
# https://distill.pub/2016/deconv-checkerboard/
def __init__(self,
*args,
**kwargs):
super().__init__(*args,
**kwargs)
self.partial = None
def forward(self, x):
out = super().forward(x)
OT = out.shape[2]
invalid_steps = self.kernel_size[0] - self.stride[0]
if self.partial is not None:
PT = self.partial.shape[-1]
if self.bias is not None:
out[..., :PT] += self.partial - self.bias[:, None]
else:
out[..., :PT] += self.partial # for ConvTrUpsample1d
invalid_steps = self.kernel_size[0] - self.stride[0]
self.partial = out[..., OT - invalid_steps :]
out = out[...,:OT - invalid_steps]
return out
class CodeBook(nn.Module):
def __init__(self, dim, codebook_size):
super().__init__()
self.register_buffer('_e', torch.zeros(codebook_size, dim))
def encode(self, x):
dist = torch.cdist(
x.transpose(1, 2), # [bs, time, 256]
self._e[None, :, :] # [1, 2048, 256]
)
codes = dist.argmin(2)
return codes
def decode(self, codes):
quantized = F.embedding(codes, self._e)
return quantized.transpose(1, 2) # [1, 256, time]
class SplitResidualVectorQuantizer(nn.Module):
def __init__(self,
n_q=None):
super().__init__()
self.in_proj_s = torch.nn.Conv1d(512, 256, 1, bias=False)
self.in_proj_a = torch.nn.Conv1d(512, 256, 1, bias=False)
self.out_proj_s = torch.nn.Conv1d(256, 512, 1, bias=False) # reused for all _acoustic_books
self.out_proj_a = torch.nn.Conv1d(256, 512, 1, bias=False)
self.layers = nn.ModuleList([CodeBook(dim=256, codebook_size=2048) for _ in range(18)])
self._acoustic_books = range(1, 16) # Official Mimi
# CODEBOOKS
# Here we re use RVQ codebooks for higher fidelity!
# Exclude 0 here as it has different proj (in_proj_s)
# self._acoustic_books = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 17, 17, 17, 17]
def encode(self, x):
indices = self.layers[0].encode(self.in_proj_s(x)) # integers
all_indices = [ indices[:, None, :], ]
x = self.in_proj_a(x)
for _cb in self._acoustic_books:
indices = self.layers[_cb].encode(x)
x = x - self.layers[_cb].decode(indices)
all_indices.append(indices[:, None, :])
codes = torch.cat(all_indices, 1)
return codes
def decode(self, codes):
_s = self.layers[0].decode(codes[:, 0, :])
_a = torch.zeros([1, 1], device=codes.device)
for i, _cb in enumerate(self._acoustic_books):
_a = _a + self.layers[_cb].decode(codes[:, i+1, :])
return self.out_proj_s(_s) + self.out_proj_a(_a) # [bs, 512, time]
class VocAttention(nn.Module):
def __init__(self,
embed_dim):
super().__init__()
self.fused_proj = nn.Parameter(torch.zeros(embed_dim, embed_dim))
def forward(self, x):
'''bypass of streaming training'''
if x.shape[1] > 1:
x = x.mean(1, keepdims=True)
x = torch.matmul(x, self.fused_proj)
return x # FFN broadcasts to x.shape[1]=2
class VocTransformerLayer(nn.Module):
def __init__(self, d_model=512, dim_feedforward=2048):
super().__init__()
self.self_attn = VocAttention(embed_dim=d_model)
self.norm1 = nn.LayerNorm(d_model, eps=1e-5)
self.norm2 = nn.LayerNorm(d_model, eps=1e-5)
self.linear1 = nn.Linear(d_model, dim_feedforward, bias=False)
self.linear2 = nn.Linear(dim_feedforward, d_model, bias=False)
def forward(self, x):
x = x + self.self_attn(self.norm1(x))
return x + self.linear2(F.gelu(self.linear1(self.norm2(x))))
class VocTransformer(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.ModuleList(VocTransformerLayer() for _ in range(8))
def forward(self, x):
x = x.transpose(1, 2)
for la in self.layers:
x = la(x)
return x.transpose(1, 2)
class Entry():
def __init__(self, tokens=None):
self.tokens = tokens
self.padding = len(tokens) + 2 - 1
class TokenState:
def __init__(self, entries = None):
self.entries = entries
self.queued = deque([])
self.lookahead_queued = deque()
self.end_step = None
self.forced_padding = 2
class TTSModel(nn.Module):
def __init__(self):
super().__init__()
self.tokenizer = SentencePieceProcessor(str(hf_hub_download(repo_id='kyutai/tts-0.75b-en-public',
filename='tokenizer_spm_8k_en_fr_audio.model')))
with torch.device("meta"):
self.emb = nn.ModuleList([ScaledEmbedding(2049, 1024) for _ in range(16)])
self.text_emb = ScaledEmbedding(8001, 1024, demux_second_stream=True)
self.transformer = LLMTransformer()
self.out_norm = RMSNorm()
self.depformer_in = nn.ModuleList([nn.Linear(1024, 1024, bias=False) for _ in range(9)])
self.depformer_emb = nn.ModuleList([ScaledEmbedding(2049, 128) for _ in range(16 - 1)])
self.depformer_text_emb = ScaledEmbedding(8001, 128, demux_second_stream=True)
self.depformer = LLMTransformer(num_layers=4, weights_per_step=16)
self.linears = nn.ModuleList([nn.Linear(1024, 2048, bias=False) for _ in range(16)]) # DPF heads
state_d = load_file(hf_hub_download(repo_id='Dionyssos/_TTS075B', filename='tts_075B.safetensors'))
self.load_state_dict(state_d, assign=True, strict=True) #overwrite devices of rand init params
self.to(dtype=torch.bfloat16).eval()
def prepare_script(self, script='Type your text here.'):
entries = []
# break is indicated as e.g. <break time="3s"/>
event_re = re.compile(r"(?:<break\s+time=\"([0-9]+(?:.[0-9]*)?)s\"\s*/?>)|(?:\s+)")
line = script.replace('โ', "'").replace(':', " ").replace('(', "").replace(')', "")
while line:
match = event_re.search(line)
if match is None:
break
word = line[:match.start()]
line = line[match.end():]
if word:
entries.append(Entry(tokens=self.tokenizer.encode(word)))
if match.group(1):
raise ValueError
# break_duration = float(match.group(1))
# padding = int(round(break_duration * frame_rate))
# entry = Entry(tokens=[], text='', padding=padding)
# entries.append(entry)
if line:
entries.append(Entry(tokens=self.tokenizer.encode(line)))
return entries
@property
def device(self):
return next(iter(self.parameters())).device
@torch.no_grad()
def generate(self, text=None,
voice_path=None, mimi=None,
play=16):
_wav, _ = sphn.read(voice_path,
sample_rate=24000)
_wav = mimi.encode(torch.from_numpy(_wav).to(device=self.device)[None])[0, :, :] # limit frames of voice prefix
state = TokenState(entries=deque(self.prepare_script(script=text)))
upper_lim = 2 * sum([len(p.tokens) for p in state.entries])
self.cache = torch.full((2,17, 4), -1, device=self.device, dtype=torch.long)
pcms = []#final audio to return
for offset in range(4 * upper_lim):
print(f'{offset=} of {upper_lim=}',end='\r')
if state.end_step is not None:
if offset >= state.end_step + 16 + 4:
break
input_ = self.cache[:, :, offset % self.cache.shape[2]].clone()
if offset == 0:
input_[:, 0] = 8000 # so we dont have to reset cfg txr = -1 for offset >0
input_[:, 1:] = 2048
if offset < 3:
input_[:, 2:] = 2048
x = self.text_emb(input_[:, :1])
for cb_ in range(16):
x = self.emb[cb_](input_[:, cb_ + 1 : cb_ + 2]) + x
x = self.out_norm(self.transformer(x))
token = -1
if offset > _wav.shape[1]:
token = 0
# START
if state.queued:
token = 3
if state.forced_padding > 0:
token = 3
#===================================
if token == 0:
if state.entries:
e = state.entries.popleft()
if e.tokens:
state.queued.extend(e.tokens)
lookahead =2
for e2 in state.entries:
if e2.tokens:
lookahead -= 1
if lookahead == 0:
state.lookahead_queued.extend(e2.tokens)
break
# print('\neeee',e2,'\n\n')
# raise ValueError
else:
token = 3
state.forced_padding = e.padding
# print(f'\n\n=========o=============\n{state.lookahead_queued=} {state.queued=}===================\n\n')
else:
token = 3
if state.end_step is None:
token = 0
if state.end_step is None:
state.end_step = offset
#==============================================
output=0
if token == 3:
if state.forced_padding > 0:
state.forced_padding -= 1
if state.queued:
output = state.queued.popleft()
else:
output = 3
# ==========================
second = -1
if output == 0:
second = 0
if state.queued:
output = state.queued.popleft()
else:
output = 3
elif state.lookahead_queued:
second = state.lookahead_queued.popleft() # Difference of queued and lookahead_queued?
token = (second + 1) * 8001 + output
# audio tokens
ac = (offset + 1) % self.cache.shape[2]
self.cache[0, 0, ac] = token
audio_tokens = torch.ones([1, 16], device=x.device, dtype=torch.long)
if offset > play:
prev_token = torch.tensor([[token]], device=x.device, dtype=torch.long)
for _cb in range(16):
last_token_input = None
if _cb == 0:
last_token_input = self.depformer_text_emb(prev_token.repeat(2, 1))
else:
last_token_input = self.depformer_emb[_cb - 1](prev_token)
dep_output = self.depformer(self.depformer_in[_cb if _cb < 9 else 8](x) + last_token_input)
logits = self.linears[_cb](dep_output)
prev_token = (2.0 * logits[0, :, :] - logits[1, :, :]).argmax(1)
audio_tokens[0, _cb] = prev_token
# voXcopy
if offset > play and offset < play + 1 + _wav.shape[1]:
audio_tokens[:, 0] = _wav[0, offset - play - 1]
if offset > play and offset < play + 2 + _wav.shape[1]:
audio_tokens[:, 1:] = _wav[1:, offset - play - 2]
# next turn
self.cache[0, 1:, ac] = audio_tokens
# cfg
if offset > 16 + 2 + _wav.shape[1]:
if offset > 16 + 4 + _wav.shape[1]:
self.cache[1, 1:, ac] = self.cache[0, 1:, ac]
else:
self.cache[1, 1, ac] = self.cache[0, 1, ac]
# ivao0/voc
if offset > 20 + _wav.shape[1]:
audio_tokens[:, 0] = self.cache[0, 1, (offset - 1) % self.cache.shape[2]] # previous
pcms.append(mimi.decode(audio_tokens[:, :, None])) # [1,1,1920]
x = torch.cat(pcms, dim=2)[0, 0, :]
return x.cpu().numpy()
class ScaledEmbedding(nn.Embedding):
def __init__(self, num_embeddings=None, embedding_dim=None, demux_second_stream=False):
super().__init__(num_embeddings, embedding_dim)
self.zero_idx = -1
self.low_rank = None
self.demux_second_stream = demux_second_stream
if self.demux_second_stream:
self.out1 = nn.Linear(embedding_dim, 1024, bias=False)
self.out2 = nn.Linear(embedding_dim, 1024, bias=False)
else:
if embedding_dim != 1024:
self.low_rank = nn.Linear(embedding_dim, 1024, bias=False)
def forward(self, input):
is_zero = input == self.zero_idx
zero = torch.zeros(1, dtype=input.dtype, device=input.device)
input = input.clamp(min=0)
if self.demux_second_stream:
left = super().forward(input % self.num_embeddings)
right = input // self.num_embeddings - 1
right_zero = (right < 0)[..., None]
right.clamp_(min=0)
right = super().forward(right)
y = self.out1(left) + torch.where(right_zero, zero, self.out2(right))
y = torch.where(is_zero[..., None], zero, y)
else:
y = super().forward(input)
y = torch.where(is_zero[..., None], zero, y)
if self.low_rank is not None:
# Can only see low_rank if no demux second stream
y = self.low_rank(y) # applies after
return y
text = '''Far over the misty mountains cold
To dungeons deep and caverns old
We must away ere break of day
To seek the pale enchanted gold.
The dwarves of yore made mighty spells,
While hammers fell like ringing bells
In places deep, where dark things sleep,
In hollow halls beneath the fells.
For ancient king and elvish lord
There many a gleaming golden hoard
They shaped and wrought, and light they caught
To hide in gems on hilt of sword.
On silver necklaces they strung
The flowering stars, on crowns they hung
The dragon-fire, in twisted wire
They meshed the light of moon and sun.
Far over the misty mountains cold
To dungeons deep and caverns old
We must away, ere break of day,
To claim our long-forgotten gold.
Farewell we call to hearth and hall!
Though wind may blow and rain may fall,
We must away ere break of day
Far over wood and mountain tall.'''
device = 'cpu' # 'cuda:0'
tts_model = TTSModel().eval().to(device)
mimi = Voc.from_pretrained('ivao0/voc').eval().to(device)
x = tts_model.generate(text=text,
voice_path=hf_hub_download(repo_id='Dionyssos/_TTS075B', filename='wav/en_US_m-ailabs_mary_ann.wav'),
mimi=mimi)
sphn.write_wav(f'dsm_tts.wav', x, 24000)
- Downloads last month
- 10