CodeAct Fine-tuned Qwen2.5-3B

A fine-tuned version of Qwen2.5-3B for code generation with self-evaluation feedback.

Model Description

This model was fine-tuned using the CodeAct approach with:

  • Base Model: Qwen/Qwen2.5-3B
  • Training Method: LoRA (Low-Rank Adaptation)
  • Training Data: 100 curated Python programming examples
  • Categories: Math, Strings, Lists, Algorithms, Data Structures

Usage

With MLX (Apple Silicon)

from mlx_lm import load, generate

model, tokenizer = load("Phoenix21/codeact-qwen2.5-3b")
# Or with adapter:
# model, tokenizer = load("Qwen/Qwen2.5-3B", adapter_path="Phoenix21/codeact-qwen2.5-3b")

response = generate(model, tokenizer, prompt="Calculate factorial of 5", max_tokens=200)
print(response)

With PyTorch (CUDA/CPU)

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-3B", trust_remote_code=True)
model = PeftModel.from_pretrained(base_model, "Phoenix21/codeact-qwen2.5-3b")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-3B", trust_remote_code=True)

Interactive Demo

# Auto-detect backend (MLX/CUDA/CPU)
python interactive_universal.py

# Force specific backend
python interactive_universal.py --backend cuda
python interactive_universal.py --backend mlx
python interactive_universal.py --backend cpu

Training Details

  • Iterations: 500
  • Batch Size: 1
  • LoRA Layers: 16
  • Learning Rate: 1e-5
  • Platform: Apple M3 (MLX)

Response Format

The model uses structured tags:

  • <thought>reasoning</thought> - Chain of thought
  • <execute>code</execute> - Python code to execute
  • <solution>answer</solution> - Final answer
  • <feedback>assessment</feedback> - Self-evaluation

Example

Input: "Calculate the sum of squares from 1 to 10"

Output:

<thought>Sum of squares formula: n(n+1)(2n+1)/6</thought>

<execute>
n = 10
result = n * (n + 1) * (2 * n + 1) // 6
print(result)
</execute>

<solution>Sum of squares from 1 to 10 is 385</solution>

<feedback>
score: 10
correctness: correct
efficiency: excellent
explanation: Used O(1) formula instead of O(n) loop
</feedback>

License

Apache 2.0

Downloads last month

-

Downloads are not tracked for this model. How to track
MLX
Hardware compatibility
Log In to view the estimation

Quantized

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Phoenix21/codeact-qwen2.5-3b

Base model

Qwen/Qwen2.5-3B
Adapter
(386)
this model