NVFP4 first 3 problems release

#11
.gitignore DELETED
@@ -1 +0,0 @@
1
- __pycache__/
 
 
README.md CHANGED
@@ -1,86 +1,27 @@
1
  ---
2
  configs:
3
- - config_name: amd_submissions
4
  data_files: "submissions.parquet"
5
- - config_name: amd_successful_submissions
6
  data_files: "successful_submissions.parquet"
7
- - config_name: nvidia_nvfp4_submissions
8
- data_files: "nvidia_nvfp4_submissions.parquet"
9
  - config_name: leaderboards
10
  data_files: "leaderboards.parquet"
11
  tags:
12
  - code
13
- license: cc-by-4.0
14
  ---
15
 
16
- # KernelBot Competition Data
17
 
18
- This dataset contains GPU kernel submissions from the KernelBot competition platform. Submissions are optimized GPU kernels written for specific hardware targets.
19
 
20
- ## Data Files
21
-
22
- ### AMD MI300 Submissions
23
- | File | Description |
24
- |------|-------------|
25
- | `submissions.parquet` | All AMD competition submissions |
26
- | `successful_submissions.parquet` | AMD submissions that passed correctness tests |
27
- | `deduplicated_submissions.parquet` | AMD submissions deduplicated by (user, code) |
28
- | `deduplicated_successful_submissions.parquet` | Deduplicated passing AMD submissions |
29
-
30
- **AMD Problems:** fp8-gemm, moe (mixture of experts), mla-decode, all2all, gemm+reducescatter, allgather+gemm
31
-
32
- ### NVIDIA Blackwell NVFP4 Submissions
33
- | File | Size | Description |
34
- |------|------|-------------|
35
- | `nvidia_nvfp4_submissions.parquet` | ~1.4 GB | NVFP4 submissions deduplicated by (user, code), with full code content |
36
-
37
-
38
- **NVFP4 Problems:** gemv (leaderboard 595), gemm (597), dual_gemm (598), modal_dual_gemm (697)
39
-
40
- **Note on Dual GEMM:** There are two variants of the dual_gemm problem. Midway through the competition, on-prem hardware measurements became unreliable, so a second leaderboard was created on Modal infrastructure. The Modal measurements (leaderboard 697, `modal_nvfp4_dual_gemm`) are more trustworthy.
41
-
42
- **Note:** Scores are execution time in seconds. **Lower is better.**
43
-
44
- ## Helper Scripts
45
-
46
- - `analyze_submissions.py` - Python functions for analyzing submissions
47
- - `skills.md` - Documentation for data processing workflows
48
-
49
- ### Quick Start
50
-
51
- ```python
52
- from analyze_submissions import load_submissions, top_contestants, author_progression
53
-
54
- # Load NVIDIA NVFP4 data
55
- df = load_submissions()
56
-
57
- # Get top 20 for a problem
58
- leaders = top_contestants(df, problem_name='nvfp4_gemm', n=20)
59
-
60
- # See a user's progression over time
61
- progression = author_progression(df, user_name='username', problem_name='nvfp4_gemm')
62
- ```
63
-
64
- ## Learn More
65
-
66
- - Competition platform: [gpumode.com](https://gpumode.com)
67
- - Reference kernels and problem specs: [github.com/gpu-mode/reference-kernels](https://github.com/gpu-mode/reference-kernels)
68
-
69
- ## License
70
-
71
- This dataset is licensed under the [Creative Commons Attribution 4.0 International License (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/).
72
-
73
- You are free to share and adapt the material for any purpose, even commercially, provided you give appropriate credit.
74
-
75
- **Attribution:** Please cite GPU Mode and link to this dataset. For academic papers, use the citation below.
76
-
77
- ## Citation
78
 
79
  If you use this dataset in your work, please cite:
80
 
81
  ```bibtex
82
  @inproceedings{
83
- kernelbot2025,
84
  title={KernelBot: A Competition Platform for Writing Heterogeneous {GPU} Code},
85
  author={Alex L Zhang and Matej Sirovatka and Erik Schultheis and Benjamin Horowitz and Mark Saroufim},
86
  booktitle={Championing Open-source DEvelopment in ML Workshop @ ICML25},
 
1
  ---
2
  configs:
3
+ - config_name: submissions
4
  data_files: "submissions.parquet"
5
+ - config_name: successful_submissions
6
  data_files: "successful_submissions.parquet"
 
 
7
  - config_name: leaderboards
8
  data_files: "leaderboards.parquet"
9
  tags:
10
  - code
11
+ license: mit
12
  ---
13
 
14
+ This is the dataset that was created from the first and second AMD $100K kernel competitions, containing roughly 110K kernels for fp8-gemm, moe, mla, all2all, gemm+reducescatter, and allgather+gemm optimized to run on MI300. Learn more at gpumode.com/v2/news
15
 
16
+ To see the full list of kernel competitions we've ran and are running you can checkout https://github.com/gpu-mode/reference-kernels which also contains details on reference kernels and their input shapes and distributions
17
 
18
+ We are planning on adding kernels optimized for NVFP4 on Blackwell next
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  If you use this dataset in your work, please cite:
21
 
22
  ```bibtex
23
  @inproceedings{
24
+ zhang2025kernelbot,
25
  title={KernelBot: A Competition Platform for Writing Heterogeneous {GPU} Code},
26
  author={Alex L Zhang and Matej Sirovatka and Erik Schultheis and Benjamin Horowitz and Mark Saroufim},
27
  booktitle={Championing Open-source DEvelopment in ML Workshop @ ICML25},
docs.md DELETED
@@ -1,158 +0,0 @@
1
- # Kernelbot Data Processing Skills
2
-
3
- This document describes how to extract and process submission data from the Kernelbot database.
4
-
5
- ## Database Connection
6
-
7
- The production database is hosted on Heroku. **NEVER run write operations (INSERT, UPDATE, DELETE) on this database.**
8
-
9
- ```bash
10
- # Get DATABASE_URL from Heroku
11
- heroku config:get DATABASE_URL --app discord-cluster-manager
12
- ```
13
-
14
- ## Database Schema
15
-
16
- The relevant tables are in the `leaderboard` schema:
17
-
18
- | Table | Description |
19
- |-------|-------------|
20
- | `leaderboard.leaderboard` | Problem definitions (id, name, deadline, task, description) |
21
- | `leaderboard.submission` | User submissions (id, leaderboard_id, user_id, code_id, submission_time, status) |
22
- | `leaderboard.runs` | Execution results (submission_id, score, passed, mode, runner, result) |
23
- | `leaderboard.user_info` | User details (id, user_name) |
24
- | `leaderboard.gpu_type` | GPU types per problem (leaderboard_id, gpu_type) |
25
- | `leaderboard.code_files` | Actual submission code content (old_code text, code bytea) |
26
-
27
- ## Key Problem IDs
28
-
29
- ### NVFP4 Problems
30
- - **595**: nvfp4_gemv
31
- - **597**: nvfp4_gemm
32
- - **598**: nvfp4_dual_gemm
33
- - **730**: nvfp4_group_gemm (not released yet)
34
-
35
- ### AMD Problems
36
- - **398**: amd-identity
37
- - **399**: amd-fp8-mm
38
- - **430**: amd-mixture-of-experts
39
- - **463**: amd-mla-decode
40
- - **563**: amd-all2all
41
- - **564**: amd-gemm-rs
42
- - **565**: amd-ag-gemm
43
-
44
- ## Run Modes
45
-
46
- | Mode | Description | Has Score? |
47
- |------|-------------|------------|
48
- | `test` | Correctness tests | No |
49
- | `benchmark` | Performance benchmarks (internal) | No |
50
- | `leaderboard` | Official leaderboard runs | **Yes** |
51
- | `profile.0-3` | Profiling runs | No |
52
-
53
- **Important:**
54
- - Use `mode = 'leaderboard'` when joining runs to get scores.
55
- - **Lower scores are better** (scores are execution time in seconds).
56
-
57
- ## SQL Queries
58
-
59
- All SQL queries are in `queries.sql`. Key queries:
60
- - List all problems
61
- - Check submission counts
62
- - Export deduplicated submissions with code
63
- - Get top N submissions
64
- - Get user progression over time
65
-
66
- ## Adding Support for a New Problem
67
-
68
- ### Step 1: Find the Problem ID
69
- Use the "LIST ALL PROBLEMS" query from `queries.sql`.
70
-
71
- ### Step 2: Check Submission Counts
72
- Use the "CHECK SUBMISSION COUNTS" query from `queries.sql`.
73
-
74
- ### Step 3: Export Deduplicated Submissions
75
- Use the "EXPORT DEDUPLICATED SUBMISSIONS WITH CODE" query from `queries.sql`.
76
-
77
- ```python
78
- import pandas as pd
79
- import psycopg2
80
-
81
- DATABASE_URL = "..." # from heroku config:get
82
- conn = psycopg2.connect(DATABASE_URL)
83
-
84
- # Read query from queries.sql and modify problem IDs as needed
85
- with open('queries.sql') as f:
86
- # Find and use the export query section
87
- pass
88
-
89
- df = pd.read_sql(query, conn)
90
- df.to_parquet('new_problem_submissions.parquet', index=False)
91
- ```
92
-
93
- ### Step 4: Verify Data Quality
94
- ```python
95
- from analyze_submissions import load_submissions, leaderboard_summary
96
-
97
- df = load_submissions('new_problem_submissions.parquet')
98
- print(leaderboard_summary(df))
99
- ```
100
-
101
- ## Accessing Submission Code
102
-
103
- The parquet files include the full code content for each submission:
104
-
105
- ```python
106
- from analyze_submissions import load_submissions
107
-
108
- df = load_submissions()
109
-
110
- # Get a specific user's best submission
111
- user_subs = df[(df['user_name'] == 'gau.nernst') & (df['problem_name'] == 'nvfp4_gemv')]
112
- best = user_subs.sort_values('score').head(1)
113
-
114
- # Access the code
115
- code = best['code'].values[0]
116
- print(code)
117
- ```
118
-
119
- ## Helper Functions
120
-
121
- Use `analyze_submissions.py`:
122
-
123
- ```python
124
- from analyze_submissions import (
125
- load_submissions, # Load parquet file
126
- author_progression, # See user's submissions over time
127
- top_contestants, # Get leaderboard rankings
128
- leaderboard_summary, # Summary stats per problem
129
- user_stats, # Stats for a specific user
130
- format_score # Format score with units (us, ms, s)
131
- )
132
- ```
133
-
134
- ## Environment Setup
135
-
136
- ```bash
137
- uv venv .venv
138
- source .venv/bin/activate
139
- uv pip install pandas pyarrow psycopg2-binary
140
- ```
141
-
142
- ## Files
143
-
144
- | File | Description |
145
- |------|-------------|
146
- | `nvidia_nvfp4_submissions.parquet` | Deduplicated NVIDIA NVFP4 submissions with code (~1.4 GB) |
147
- | `queries.sql` | All SQL queries for data extraction |
148
- | `scripts/nvfp4/analyze_submissions.py` | Helper functions library |
149
- | `scripts/nvfp4/get_fastest_submission.py` | Print user's fastest submission |
150
- | `scripts/nvfp4/query_submissions.py` | List submission IDs or query specific ID |
151
-
152
- ## Review Checklist Before Pushing
153
-
154
- 1. Verify submission counts match expectations
155
- 2. Check for any anomalies in scores (negative, extremely large, etc.)
156
- 3. Confirm deduplication worked correctly
157
- 4. Test helper functions work with the new data
158
- 5. Run `python scripts/nvfp4/query_submissions.py` to verify
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
nvidia_nvfp4_submissions.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:64f4d29e68f3471b524be55a62f1af58a4d36a0f1f2d191c59a8f5302941e664
3
- size 1622580981
 
 
 
 
queries.sql DELETED
@@ -1,124 +0,0 @@
1
- -- Kernelbot Database Queries
2
- -- All queries are READ ONLY. Never run INSERT/UPDATE/DELETE on production.
3
- -- Scores are execution time in seconds. Lower is better.
4
-
5
- --------------------------------------------------------------------------------
6
- -- LIST ALL PROBLEMS
7
- --------------------------------------------------------------------------------
8
- SELECT
9
- l.id,
10
- l.name,
11
- l.deadline,
12
- l.description,
13
- array_agg(g.gpu_type) as gpu_types
14
- FROM leaderboard.leaderboard l
15
- LEFT JOIN leaderboard.gpu_type g ON l.id = g.leaderboard_id
16
- GROUP BY l.id, l.name, l.deadline, l.description
17
- ORDER BY l.id;
18
-
19
- --------------------------------------------------------------------------------
20
- -- PROBLEM IDS
21
- --------------------------------------------------------------------------------
22
- -- NVFP4: 595 (gemv), 597 (gemm), 598 (dual_gemm), 730 (group_gemm)
23
- -- AMD: 398 (identity), 399 (fp8-mm), 430 (moe), 463 (mla-decode),
24
- -- 563 (all2all), 564 (gemm-rs), 565 (ag-gemm)
25
-
26
- --------------------------------------------------------------------------------
27
- -- CHECK SUBMISSION COUNTS FOR A PROBLEM
28
- --------------------------------------------------------------------------------
29
- SELECT
30
- COUNT(*) as total_submissions,
31
- COUNT(DISTINCT user_id) as unique_users
32
- FROM leaderboard.submission
33
- WHERE leaderboard_id = 595; -- Replace with problem ID
34
-
35
- --------------------------------------------------------------------------------
36
- -- EXPORT DEDUPLICATED SUBMISSIONS WITH CODE
37
- -- Deduplicates by (user_id, code_id), keeping the fastest score
38
- --------------------------------------------------------------------------------
39
- WITH ranked AS (
40
- SELECT
41
- s.id as submission_id,
42
- s.leaderboard_id,
43
- l.name as problem_name,
44
- s.user_id,
45
- u.user_name,
46
- s.code_id,
47
- s.file_name,
48
- s.submission_time,
49
- s.status,
50
- r.score,
51
- r.passed,
52
- r.mode,
53
- r.runner,
54
- COALESCE(c.old_code, convert_from(c.code, 'UTF8')) as code,
55
- ROW_NUMBER() OVER (
56
- PARTITION BY s.leaderboard_id, s.user_id, s.code_id
57
- ORDER BY r.score ASC NULLS LAST
58
- ) as rn
59
- FROM leaderboard.submission s
60
- JOIN leaderboard.leaderboard l ON s.leaderboard_id = l.id
61
- LEFT JOIN leaderboard.user_info u ON s.user_id = u.id
62
- LEFT JOIN leaderboard.runs r ON s.id = r.submission_id AND r.mode = 'leaderboard'
63
- LEFT JOIN leaderboard.code_files c ON s.code_id = c.id
64
- WHERE s.leaderboard_id IN (595, 597, 598) -- Replace with problem IDs
65
- )
66
- SELECT
67
- submission_id, leaderboard_id, problem_name, user_id, user_name,
68
- code_id, file_name, submission_time, status, score, passed, mode, runner, code
69
- FROM ranked
70
- WHERE rn = 1
71
- ORDER BY problem_name, score ASC NULLS LAST;
72
-
73
- --------------------------------------------------------------------------------
74
- -- CHECK RUN MODES AND SCORES
75
- --------------------------------------------------------------------------------
76
- SELECT
77
- r.mode,
78
- COUNT(*) as cnt,
79
- COUNT(r.score) as has_score,
80
- MIN(r.score) as min_score,
81
- MAX(r.score) as max_score
82
- FROM leaderboard.runs r
83
- JOIN leaderboard.submission s ON r.submission_id = s.id
84
- WHERE s.leaderboard_id IN (595, 597, 598)
85
- GROUP BY r.mode
86
- ORDER BY cnt DESC;
87
-
88
- --------------------------------------------------------------------------------
89
- -- GET TOP N SUBMISSIONS FOR A PROBLEM
90
- --------------------------------------------------------------------------------
91
- SELECT
92
- u.user_name,
93
- r.score,
94
- s.submission_time
95
- FROM leaderboard.submission s
96
- JOIN leaderboard.runs r ON s.id = r.submission_id AND r.mode = 'leaderboard'
97
- LEFT JOIN leaderboard.user_info u ON s.user_id = u.id
98
- WHERE s.leaderboard_id = 595 -- Replace with problem ID
99
- AND r.passed = true
100
- AND r.score IS NOT NULL
101
- ORDER BY r.score ASC
102
- LIMIT 20;
103
-
104
- --------------------------------------------------------------------------------
105
- -- GET USER'S SUBMISSIONS OVER TIME (progression)
106
- --------------------------------------------------------------------------------
107
- SELECT
108
- s.submission_time,
109
- r.score,
110
- r.passed
111
- FROM leaderboard.submission s
112
- JOIN leaderboard.runs r ON s.id = r.submission_id AND r.mode = 'leaderboard'
113
- JOIN leaderboard.user_info u ON s.user_id = u.id
114
- WHERE u.user_name = 'gau.nernst' -- Replace with username
115
- AND s.leaderboard_id = 595 -- Replace with problem ID
116
- ORDER BY s.submission_time ASC;
117
-
118
- --------------------------------------------------------------------------------
119
- -- GET CODE FOR A SPECIFIC SUBMISSION
120
- --------------------------------------------------------------------------------
121
- SELECT
122
- COALESCE(c.old_code, convert_from(c.code, 'UTF8')) as code
123
- FROM leaderboard.code_files c
124
- WHERE c.id = 79741; -- Replace with code_id
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/nvfp4/analyze_submissions.py DELETED
@@ -1,168 +0,0 @@
1
- #!/usr/bin/env python3
2
- """
3
- Helper functions for analyzing kernelbot submissions.
4
-
5
- Usage:
6
- from analyze_submissions import load_submissions, author_progression, top_contestants
7
- """
8
-
9
- import pandas as pd
10
- from pathlib import Path
11
-
12
-
13
- def format_score(score, unit='us'):
14
- """
15
- Format score with appropriate units.
16
-
17
- Args:
18
- score: Score in seconds
19
- unit: 'us' for microseconds, 'ms' for milliseconds, 'auto' for automatic
20
-
21
- Returns:
22
- Formatted string with units
23
- """
24
- if pd.isna(score):
25
- return 'N/A'
26
-
27
- if unit == 'auto':
28
- if score < 0.001: # Less than 1ms, show in microseconds
29
- return f"{score * 1_000_000:.2f} µs"
30
- elif score < 1: # Less than 1s, show in milliseconds
31
- return f"{score * 1_000:.3f} ms"
32
- else:
33
- return f"{score:.4f} s"
34
- elif unit == 'us':
35
- return f"{score * 1_000_000:.2f} µs"
36
- elif unit == 'ms':
37
- return f"{score * 1_000:.3f} ms"
38
- else:
39
- return f"{score:.6f} s"
40
-
41
-
42
- def load_submissions(parquet_path: str = None) -> pd.DataFrame:
43
- """Load deduplicated submissions from parquet file."""
44
- if parquet_path is None:
45
- parquet_path = Path(__file__).parent.parent.parent / "nvidia_nvfp4_submissions.parquet"
46
- return pd.read_parquet(parquet_path)
47
-
48
-
49
- def author_progression(df: pd.DataFrame, user_id: str = None, user_name: str = None,
50
- problem_name: str = None) -> pd.DataFrame:
51
- """
52
- Get submissions from an author sorted by time to see their progression.
53
-
54
- Args:
55
- df: DataFrame of submissions
56
- user_id: Filter by user ID (Discord ID)
57
- user_name: Filter by username (partial match, case-insensitive)
58
- problem_name: Filter by problem name
59
-
60
- Returns:
61
- DataFrame sorted by submission_time showing the author's journey
62
- """
63
- result = df.copy()
64
-
65
- if user_id:
66
- result = result[result['user_id'] == user_id]
67
-
68
- if user_name:
69
- result = result[result['user_name'].str.contains(user_name, case=False, na=False)]
70
-
71
- if problem_name:
72
- result = result[result['problem_name'] == problem_name]
73
-
74
- return result.sort_values('submission_time')
75
-
76
-
77
- def top_contestants(df: pd.DataFrame, problem_name: str = None, n: int = 20,
78
- passing_only: bool = True) -> pd.DataFrame:
79
- """
80
- Get top contestants sorted by their best score (fastest time).
81
-
82
- Args:
83
- df: DataFrame of submissions
84
- problem_name: Filter by problem name (required for meaningful results)
85
- n: Number of top contestants to return
86
- passing_only: Only include passing submissions
87
-
88
- Returns:
89
- DataFrame with top contestants and their best scores
90
- """
91
- result = df.copy()
92
-
93
- if problem_name:
94
- result = result[result['problem_name'] == problem_name]
95
-
96
- if passing_only:
97
- result = result[result['passed'] == True]
98
-
99
- # Filter out rows with NA scores
100
- result = result.dropna(subset=['score'])
101
-
102
- if result.empty:
103
- return pd.DataFrame(columns=['user_name', 'user_id', 'score', 'submission_time', 'problem_name'])
104
-
105
- # Get best score per user
106
- best_scores = result.loc[result.groupby('user_id')['score'].idxmin()]
107
-
108
- return best_scores.sort_values('score').head(n)[
109
- ['user_name', 'user_id', 'score', 'submission_time', 'problem_name']
110
- ]
111
-
112
-
113
- def leaderboard_summary(df: pd.DataFrame, score_unit='us') -> pd.DataFrame:
114
- """
115
- Get summary statistics for each problem.
116
-
117
- Args:
118
- df: DataFrame of submissions
119
- score_unit: 'us' for microseconds, 'ms' for milliseconds, 's' for seconds
120
-
121
- Returns:
122
- DataFrame with submission counts, unique users, score ranges
123
- """
124
- summary = df.groupby('problem_name').agg({
125
- 'submission_id': 'count',
126
- 'user_id': 'nunique',
127
- 'score': ['min', 'median', 'max'],
128
- 'passed': 'sum'
129
- })
130
-
131
- summary.columns = ['submissions', 'unique_users', 'best_score', 'median_score',
132
- 'worst_score', 'passing_count']
133
-
134
- # Convert scores to specified unit
135
- if score_unit == 'us':
136
- multiplier = 1_000_000
137
- summary['best_score'] = (summary['best_score'] * multiplier).round(2)
138
- summary['median_score'] = (summary['median_score'] * multiplier).round(2)
139
- summary['worst_score'] = (summary['worst_score'] * multiplier).round(2)
140
- elif score_unit == 'ms':
141
- multiplier = 1_000
142
- summary['best_score'] = (summary['best_score'] * multiplier).round(3)
143
- summary['median_score'] = (summary['median_score'] * multiplier).round(3)
144
- summary['worst_score'] = (summary['worst_score'] * multiplier).round(3)
145
-
146
- return summary
147
-
148
-
149
- def user_stats(df: pd.DataFrame, user_id: str = None, user_name: str = None) -> pd.DataFrame:
150
- """
151
- Get statistics for a specific user across all problems.
152
- """
153
- result = df.copy()
154
-
155
- if user_id:
156
- result = result[result['user_id'] == user_id]
157
- elif user_name:
158
- result = result[result['user_name'].str.contains(user_name, case=False, na=False)]
159
-
160
- return result.groupby('problem_name').agg({
161
- 'submission_id': 'count',
162
- 'score': 'min',
163
- 'passed': 'sum'
164
- }).rename(columns={
165
- 'submission_id': 'num_submissions',
166
- 'score': 'best_score',
167
- 'passed': 'passing_count'
168
- })
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/nvfp4/get_fastest_submission.py DELETED
@@ -1,20 +0,0 @@
1
- #!/usr/bin/env python3
2
- """Print gau.nernst's fastest submission code to stdout."""
3
-
4
- import pandas as pd
5
- from pathlib import Path
6
-
7
- df = pd.read_parquet(Path(__file__).parent.parent.parent / 'nvidia_nvfp4_submissions.parquet')
8
-
9
- # Get fastest submission across all problems
10
- best = df[df['user_name'] == 'gau.nernst'].sort_values('score').head(1)
11
-
12
- problem = best['problem_name'].values[0]
13
- score_us = best['score'].values[0] * 1_000_000
14
-
15
- print(f"User: gau.nernst")
16
- print(f"Problem: {problem}")
17
- print(f"Score: {score_us:.2f} µs")
18
- print(f"Submission ID: {best['submission_id'].values[0]}")
19
- print("\n=== CODE ===\n")
20
- print(best['code'].values[0])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/nvfp4/query_submissions.py DELETED
@@ -1,57 +0,0 @@
1
- #!/usr/bin/env python3
2
- """
3
- Query submissions by user/problem or by submission ID.
4
-
5
- Usage:
6
- python query_submissions.py # Show all submission IDs for gau.nernst on gemv
7
- python query_submissions.py --id 187476 # Show code for specific submission ID
8
- python query_submissions.py --user gau.nernst --problem nvfp4_gemm
9
- """
10
-
11
- import argparse
12
- import pandas as pd
13
- from pathlib import Path
14
-
15
- df = pd.read_parquet(Path(__file__).parent.parent.parent / 'nvidia_nvfp4_submissions.parquet')
16
-
17
- parser = argparse.ArgumentParser()
18
- parser.add_argument('--id', type=int, help='Submission ID to query')
19
- parser.add_argument('--user', default='gau.nernst', help='Username to filter')
20
- parser.add_argument('--problem', default='nvfp4_gemv', help='Problem name to filter')
21
- args = parser.parse_args()
22
-
23
- if args.id:
24
- # Query specific submission
25
- sub = df[df['submission_id'] == args.id]
26
- if sub.empty:
27
- print(f"Submission {args.id} not found")
28
- else:
29
- row = sub.iloc[0]
30
- score_us = row['score'] * 1_000_000 if pd.notna(row['score']) else 'N/A'
31
- print(f"ID: {row['submission_id']}")
32
- print(f"User: {row['user_name']}")
33
- print(f"Problem: {row['problem_name']}")
34
- print(f"Score: {score_us:.2f} µs" if isinstance(score_us, float) else f"Score: {score_us}")
35
- print(f"\n=== CODE ===\n")
36
- print(row['code'])
37
- else:
38
- # List all submission IDs for user/problem
39
- subs = df[(df['user_name'] == args.user) & (df['problem_name'] == args.problem)]
40
- subs = subs.sort_values('score')
41
-
42
- ids = subs['submission_id'].tolist()
43
- scores = [(row['submission_id'], row['score'] * 1_000_000 if pd.notna(row['score']) else None)
44
- for _, row in subs.iterrows()]
45
-
46
- print(f"User: {args.user} | Problem: {args.problem} | Count: {len(ids)}")
47
- print(f"\nSubmission IDs (sorted by score, fastest first):")
48
- print(ids)
49
-
50
- # Get fastest/slowest with valid scores
51
- valid_scores = [(sid, sc) for sid, sc in scores if sc is not None]
52
- if valid_scores:
53
- print(f"\nFastest: {valid_scores[0][0]} ({valid_scores[0][1]:.2f} µs)")
54
- print(f"Slowest: {valid_scores[-1][0]} ({valid_scores[-1][1]:.2f} µs)")
55
- print(f"\nQuery a specific submission: python query_submissions.py --id {valid_scores[0][0]}")
56
- else:
57
- print("\nNo submissions with scores found")