MNASNet05: Optimized for Qualcomm Devices

MNASNet05 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This is based on the implementation of MNASNet05 found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.

Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.

Getting Started

There are two ways to deploy this model on your device:

Option 1: Download Pre-Exported Models

Below are pre-exported model assets ready for deployment.

Runtime Precision Chipset SDK Versions Download
ONNX float Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
ONNX w8a16 Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
QNN_DLC float Universal QAIRT 2.42 Download
QNN_DLC w8a16 Universal QAIRT 2.42 Download
TFLITE float Universal QAIRT 2.42, TFLite 2.17.0 Download

For more device-specific assets and performance metrics, visit MNASNet05 on Qualcomm® AI Hub.

Option 2: Export with Custom Configurations

Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:

  • Custom weights (e.g., fine-tuned checkpoints)
  • Custom input shapes
  • Target device and runtime configurations

This option is ideal if you need to customize the model beyond the default configuration provided here.

See our repository for MNASNet05 on GitHub for usage instructions.

Model Details

Model Type: Model_use_case.image_classification

Model Stats:

  • Model checkpoint: Imagenet
  • Input resolution: 224x224
  • Number of parameters: 2.21M
  • Model size (float): 8.45 MB
  • Model size (w8a16): 2.79 MB

Performance Summary

Model Runtime Precision Chipset Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit
MNASNet05 ONNX float Snapdragon® X Elite 0.617 ms 5 - 5 MB NPU
MNASNet05 ONNX float Snapdragon® 8 Gen 3 Mobile 0.493 ms 0 - 116 MB NPU
MNASNet05 ONNX float Qualcomm® QCS8550 (Proxy) 0.691 ms 0 - 12 MB NPU
MNASNet05 ONNX float Qualcomm® QCS9075 0.97 ms 1 - 3 MB NPU
MNASNet05 ONNX float Snapdragon® 8 Elite For Galaxy Mobile 0.381 ms 0 - 99 MB NPU
MNASNet05 ONNX float Snapdragon® 8 Elite Gen 5 Mobile 0.317 ms 1 - 99 MB NPU
MNASNet05 ONNX w8a16 Snapdragon® X Elite 0.645 ms 2 - 2 MB NPU
MNASNet05 ONNX w8a16 Snapdragon® 8 Gen 3 Mobile 0.521 ms 0 - 111 MB NPU
MNASNet05 ONNX w8a16 Qualcomm® QCS6490 29.306 ms 8 - 11 MB CPU
MNASNet05 ONNX w8a16 Qualcomm® QCS8550 (Proxy) 0.705 ms 0 - 44 MB NPU
MNASNet05 ONNX w8a16 Qualcomm® QCS9075 0.899 ms 0 - 3 MB NPU
MNASNet05 ONNX w8a16 Qualcomm® QCM6690 18.804 ms 9 - 16 MB CPU
MNASNet05 ONNX w8a16 Snapdragon® 8 Elite For Galaxy Mobile 0.368 ms 0 - 100 MB NPU
MNASNet05 ONNX w8a16 Snapdragon® 7 Gen 4 Mobile 13.001 ms 9 - 16 MB CPU
MNASNet05 ONNX w8a16 Snapdragon® 8 Elite Gen 5 Mobile 0.329 ms 0 - 100 MB NPU
MNASNet05 QNN_DLC float Snapdragon® X Elite 0.916 ms 1 - 1 MB NPU
MNASNet05 QNN_DLC float Snapdragon® 8 Gen 3 Mobile 0.516 ms 0 - 46 MB NPU
MNASNet05 QNN_DLC float Qualcomm® QCS8275 (Proxy) 2.318 ms 1 - 30 MB NPU
MNASNet05 QNN_DLC float Qualcomm® QCS8550 (Proxy) 0.775 ms 1 - 2 MB NPU
MNASNet05 QNN_DLC float Qualcomm® SA8775P 1.091 ms 1 - 31 MB NPU
MNASNet05 QNN_DLC float Qualcomm® QCS9075 0.974 ms 1 - 3 MB NPU
MNASNet05 QNN_DLC float Qualcomm® QCS8450 (Proxy) 1.579 ms 0 - 48 MB NPU
MNASNet05 QNN_DLC float Qualcomm® SA7255P 2.318 ms 1 - 30 MB NPU
MNASNet05 QNN_DLC float Qualcomm® SA8295P 1.416 ms 0 - 28 MB NPU
MNASNet05 QNN_DLC float Snapdragon® 8 Elite For Galaxy Mobile 0.379 ms 0 - 33 MB NPU
MNASNet05 QNN_DLC float Snapdragon® 8 Elite Gen 5 Mobile 0.291 ms 1 - 33 MB NPU
MNASNet05 QNN_DLC w8a16 Snapdragon® X Elite 0.924 ms 0 - 0 MB NPU
MNASNet05 QNN_DLC w8a16 Snapdragon® 8 Gen 3 Mobile 0.53 ms 0 - 37 MB NPU
MNASNet05 QNN_DLC w8a16 Qualcomm® QCS6490 2.225 ms 2 - 4 MB NPU
MNASNet05 QNN_DLC w8a16 Qualcomm® QCS8275 (Proxy) 1.665 ms 0 - 26 MB NPU
MNASNet05 QNN_DLC w8a16 Qualcomm® QCS8550 (Proxy) 0.785 ms 0 - 2 MB NPU
MNASNet05 QNN_DLC w8a16 Qualcomm® SA8775P 4.096 ms 0 - 27 MB NPU
MNASNet05 QNN_DLC w8a16 Qualcomm® QCS9075 0.925 ms 0 - 2 MB NPU
MNASNet05 QNN_DLC w8a16 Qualcomm® QCM6690 3.052 ms 0 - 138 MB NPU
MNASNet05 QNN_DLC w8a16 Qualcomm® QCS8450 (Proxy) 0.958 ms 0 - 39 MB NPU
MNASNet05 QNN_DLC w8a16 Qualcomm® SA7255P 1.665 ms 0 - 26 MB NPU
MNASNet05 QNN_DLC w8a16 Qualcomm® SA8295P 1.235 ms 0 - 23 MB NPU
MNASNet05 QNN_DLC w8a16 Snapdragon® 8 Elite For Galaxy Mobile 0.361 ms 0 - 25 MB NPU
MNASNet05 QNN_DLC w8a16 Snapdragon® 7 Gen 4 Mobile 0.785 ms 0 - 24 MB NPU
MNASNet05 QNN_DLC w8a16 Snapdragon® 8 Elite Gen 5 Mobile 0.29 ms 0 - 29 MB NPU
MNASNet05 TFLITE float Snapdragon® 8 Gen 3 Mobile 0.519 ms 0 - 47 MB NPU
MNASNet05 TFLITE float Qualcomm® QCS8275 (Proxy) 2.331 ms 0 - 30 MB NPU
MNASNet05 TFLITE float Qualcomm® QCS8550 (Proxy) 0.776 ms 0 - 1 MB NPU
MNASNet05 TFLITE float Qualcomm® SA8775P 1.107 ms 0 - 33 MB NPU
MNASNet05 TFLITE float Qualcomm® QCS9075 0.978 ms 0 - 8 MB NPU
MNASNet05 TFLITE float Qualcomm® QCS8450 (Proxy) 1.581 ms 0 - 49 MB NPU
MNASNet05 TFLITE float Qualcomm® SA7255P 2.331 ms 0 - 30 MB NPU
MNASNet05 TFLITE float Qualcomm® SA8295P 1.432 ms 0 - 29 MB NPU
MNASNet05 TFLITE float Snapdragon® 8 Elite For Galaxy Mobile 0.384 ms 0 - 35 MB NPU
MNASNet05 TFLITE float Snapdragon® 8 Elite Gen 5 Mobile 0.29 ms 0 - 34 MB NPU

License

  • The license for the original implementation of MNASNet05 can be found here.

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for qualcomm/MNASNet05