WideResNet50: Optimized for Mobile Deployment

Imagenet classifier and general purpose backbone

WideResNet50 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of WideResNet50 found here.

This repository provides scripts to run WideResNet50 on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.image_classification
  • Model Stats:
    • Model checkpoint: Imagenet
    • Input resolution: 224x224
    • Number of parameters: 68.9M
    • Model size (float): 263 MB
    • Model size (w8a8): 66.6 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
WideResNet50 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 23.843 ms 0 - 196 MB NPU WideResNet50.tflite
WideResNet50 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 24.34 ms 1 - 144 MB NPU WideResNet50.dlc
WideResNet50 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 8.049 ms 0 - 314 MB NPU WideResNet50.tflite
WideResNet50 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 9.041 ms 1 - 178 MB NPU WideResNet50.dlc
WideResNet50 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 4.751 ms 0 - 3 MB NPU WideResNet50.tflite
WideResNet50 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 4.784 ms 1 - 3 MB NPU WideResNet50.dlc
WideResNet50 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 4.808 ms 0 - 162 MB NPU WideResNet50.onnx.zip
WideResNet50 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 7.139 ms 0 - 202 MB NPU WideResNet50.tflite
WideResNet50 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 7.17 ms 1 - 145 MB NPU WideResNet50.dlc
WideResNet50 float SA7255P ADP Qualcomm® SA7255P TFLITE 23.843 ms 0 - 196 MB NPU WideResNet50.tflite
WideResNet50 float SA7255P ADP Qualcomm® SA7255P QNN_DLC 24.34 ms 1 - 144 MB NPU WideResNet50.dlc
WideResNet50 float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 4.749 ms 0 - 3 MB NPU WideResNet50.tflite
WideResNet50 float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 4.792 ms 1 - 3 MB NPU WideResNet50.dlc
WideResNet50 float SA8295P ADP Qualcomm® SA8295P TFLITE 7.691 ms 0 - 188 MB NPU WideResNet50.tflite
WideResNet50 float SA8295P ADP Qualcomm® SA8295P QNN_DLC 7.829 ms 1 - 133 MB NPU WideResNet50.dlc
WideResNet50 float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 4.765 ms 0 - 3 MB NPU WideResNet50.tflite
WideResNet50 float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 4.777 ms 1 - 3 MB NPU WideResNet50.dlc
WideResNet50 float SA8775P ADP Qualcomm® SA8775P TFLITE 7.139 ms 0 - 202 MB NPU WideResNet50.tflite
WideResNet50 float SA8775P ADP Qualcomm® SA8775P QNN_DLC 7.17 ms 1 - 145 MB NPU WideResNet50.dlc
WideResNet50 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 3.636 ms 0 - 335 MB NPU WideResNet50.tflite
WideResNet50 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 3.62 ms 0 - 197 MB NPU WideResNet50.dlc
WideResNet50 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 3.564 ms 0 - 167 MB NPU WideResNet50.onnx.zip
WideResNet50 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 2.866 ms 0 - 199 MB NPU WideResNet50.tflite
WideResNet50 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 2.958 ms 1 - 149 MB NPU WideResNet50.dlc
WideResNet50 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 3.032 ms 0 - 115 MB NPU WideResNet50.onnx.zip
WideResNet50 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 2.626 ms 0 - 197 MB NPU WideResNet50.tflite
WideResNet50 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 2.533 ms 1 - 148 MB NPU WideResNet50.dlc
WideResNet50 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 2.811 ms 1 - 125 MB NPU WideResNet50.onnx.zip
WideResNet50 float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 4.682 ms 1 - 1 MB NPU WideResNet50.dlc
WideResNet50 float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 4.482 ms 132 - 132 MB NPU WideResNet50.onnx.zip
WideResNet50 w8a8 Dragonwing Q-6690 MTP Qualcomm® Qcm6690 TFLITE 17.833 ms 0 - 190 MB NPU WideResNet50.tflite
WideResNet50 w8a8 Dragonwing Q-6690 MTP Qualcomm® Qcm6690 QNN_DLC 19.814 ms 0 - 192 MB NPU WideResNet50.dlc
WideResNet50 w8a8 Dragonwing Q-6690 MTP Qualcomm® Qcm6690 ONNX 61.363 ms 6 - 21 MB CPU WideResNet50.onnx.zip
WideResNet50 w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 TFLITE 6.751 ms 0 - 68 MB NPU WideResNet50.tflite
WideResNet50 w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 QNN_DLC 7.749 ms 2 - 4 MB NPU WideResNet50.dlc
WideResNet50 w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 ONNX 77.047 ms 10 - 112 MB CPU WideResNet50.onnx.zip
WideResNet50 w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 3.81 ms 0 - 143 MB NPU WideResNet50.tflite
WideResNet50 w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 4.014 ms 0 - 144 MB NPU WideResNet50.dlc
WideResNet50 w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 2.398 ms 0 - 224 MB NPU WideResNet50.tflite
WideResNet50 w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 2.523 ms 0 - 225 MB NPU WideResNet50.dlc
WideResNet50 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 1.738 ms 0 - 2 MB NPU WideResNet50.tflite
WideResNet50 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 1.885 ms 0 - 2 MB NPU WideResNet50.dlc
WideResNet50 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 2.052 ms 0 - 83 MB NPU WideResNet50.onnx.zip
WideResNet50 w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 1.871 ms 0 - 143 MB NPU WideResNet50.tflite
WideResNet50 w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 2.026 ms 0 - 144 MB NPU WideResNet50.dlc
WideResNet50 w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 56.246 ms 0 - 449 MB GPU WideResNet50.tflite
WideResNet50 w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) ONNX 60.446 ms 0 - 84 MB CPU WideResNet50.onnx.zip
WideResNet50 w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 3.81 ms 0 - 143 MB NPU WideResNet50.tflite
WideResNet50 w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 4.014 ms 0 - 144 MB NPU WideResNet50.dlc
WideResNet50 w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 1.741 ms 0 - 2 MB NPU WideResNet50.tflite
WideResNet50 w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 1.885 ms 0 - 2 MB NPU WideResNet50.dlc
WideResNet50 w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 2.616 ms 0 - 148 MB NPU WideResNet50.tflite
WideResNet50 w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 2.758 ms 0 - 150 MB NPU WideResNet50.dlc
WideResNet50 w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 1.743 ms 0 - 2 MB NPU WideResNet50.tflite
WideResNet50 w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 1.876 ms 0 - 2 MB NPU WideResNet50.dlc
WideResNet50 w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 1.871 ms 0 - 143 MB NPU WideResNet50.tflite
WideResNet50 w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 2.026 ms 0 - 144 MB NPU WideResNet50.dlc
WideResNet50 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 1.312 ms 0 - 218 MB NPU WideResNet50.tflite
WideResNet50 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 1.422 ms 0 - 224 MB NPU WideResNet50.dlc
WideResNet50 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 1.518 ms 0 - 196 MB NPU WideResNet50.onnx.zip
WideResNet50 w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 1.119 ms 0 - 148 MB NPU WideResNet50.tflite
WideResNet50 w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 1.166 ms 0 - 145 MB NPU WideResNet50.dlc
WideResNet50 w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 1.32 ms 0 - 123 MB NPU WideResNet50.onnx.zip
WideResNet50 w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile TFLITE 2.78 ms 0 - 188 MB NPU WideResNet50.tflite
WideResNet50 w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile QNN_DLC 2.913 ms 0 - 193 MB NPU WideResNet50.dlc
WideResNet50 w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile ONNX 56.994 ms 8 - 23 MB CPU WideResNet50.onnx.zip
WideResNet50 w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 1.049 ms 0 - 146 MB NPU WideResNet50.tflite
WideResNet50 w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 1.082 ms 0 - 148 MB NPU WideResNet50.dlc
WideResNet50 w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 1.266 ms 0 - 121 MB NPU WideResNet50.onnx.zip
WideResNet50 w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 1.806 ms 0 - 0 MB NPU WideResNet50.dlc
WideResNet50 w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 1.784 ms 67 - 67 MB NPU WideResNet50.onnx.zip

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub Workbench with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.wideresnet50.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.wideresnet50.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.wideresnet50.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.wideresnet50 import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.wideresnet50.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.wideresnet50.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on WideResNet50's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of WideResNet50 can be found here.

References

Community

Downloads last month
170
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for qualcomm/WideResNet50